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Summary

In the analysis of genome-wide association (GWA) data, the aim is to detect statistical asso-

ciations between single nucleotide polymorphisms (SNPs) and the disease or trait of interest.

These SNPs, or the particular regions of the genome they implicate, are then considered for

further study. We demonstrate through a comprehensive simulation study that the inclusion of

additional, biologically relevant information through a 2-level empirical Bayes hierarchical model

framework offers a more robust method of detecting associated SNPs. The empirical Bayes ap-

proach is an objective means of analyzing the data without the need for the setting of subjective

parameter estimates. This framework gives more stable estimates of effects through a reduction

of the variability in the usual effect estimates. We also demonstrate the consequences of includ-

ing additional information that is not informative and examine power and false-positive rates.

We apply the methodology to a number of genome-wide association (GWA) data sets with the
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inclusion of additional biological information. Our results agree with previous findings and in the

case of one data set (Crohn’s disease) suggest an additional region of interest.

Key words: Coronary artery disease; Crohn’s disease; Multilevel model; Rheumatoid arthritis; Semi-

Bayes; Type 2 diabetes.

1. Introduction

Genome-wide association studies (GWASs) aiming to detect associations between observable

traits and genetic variation across the genome are now commonplace thanks to the advent of

several economically feasible high-throughput genotyping technologies. This genetic variation is

typically in the form of single nucleotide polymorphisms (SNPs). Data consist of genotypes at

each of the SNPs, for members of groups of cases and controls or family members (parents and

affected offspring). The choice of case-control or family data may depend on the age-of-onset of

the disease/trait being studied. There are many approaches to analyzing these data, including,

for example, single SNP analyses and pathway approaches; Allison and others (2006) provide a

review of current statistical analysis methodologies. A typical study design consists of 2 stages:

first, an association analysis is carried out on each SNP, with the observed trait/phenotype status.

Then the SNPs deemed most highly associated with the trait, and often additional surrounding

SNPs are analyzed in independent samples in order to determine whether or not the signals are

replicated.

The SNP data are analyzed in the case–control setting with one of a range of statistical tests,

for example, Cochran–Armitage trend test, Cochran–Mantel–Haenszel test, logistic regression,

and Bayes factors. Each of these tests assume certain genetic models and can account for the

presence of population stratification and any additional information that may be available for

the individuals in the study. The results from these analyses are usually in the form of a ranked
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list of P -values from which a subset of the top ranked SNPs is then taken forward for further

study in an independent sample.

For each individual, as well as their genotype at each SNP, additional information is often

recorded, for example, age, sex, and medical history. Also, as GWASs are often carried out

in large consortia, with sample collections taking place at various sites, the site, and ethnicity

information (sometimes self-reported or inferred) are also available. These are just some examples

of extra data that may have been recorded, and we will henceforth refer to this type of additional

information as additional phenotypic information (additional to the disease or trait status). This

additional phenotypic information should, where possible, be incorporated into the testing for

SNP association.

In these analyses, all SNPs are treated in the same manner; in particular, they are all mod-

eled as being equally likely to have the same impact on the phenotype. The exception being the

Bayes factor approach which, among other advantages, allows for the inclusion of prior association

information for each SNP. Although these analyses do sometimes incorporate additional pheno-

typic information such as that described above, rarely is other additional biological information

included.

This biological information may be in the form of functional information, for example, bio-

logically relevant location information for the SNPs, prior linkage findings, or prior association

findings. This type of additional information that relates to the SNPs as opposed to the individ-

uals in the study will be referred to as additional biological information. Approaches have been

proposed to include this additional biological information in the form of multilevel or hierarchi-

cal models (Dudoit and others, 2002; Irizarry and others, 2003; Lyons-Weiler and others, 2004;

Rieger and others, 2004).

Hierarchical or multilevel modeling, as the names suggest, consist of 2 or more levels that are

organized in a hierarchical framework. The levels specify relationships between the variables and
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parameters that are of interest; these relationships may be in the form of regression equations,

for example. The estimation of parameters in these models can be carried out in a fully Bayesian

manner, where the distinction between data and prior information is strictly adhered to, with

the prior distribution not depending on the data. A semi-Bayes approach can also be used in

which prior information is subjectively fixed by the practitioner or an empirical Bayes approach

in which the data themselves are used to specify priors. This latter approach can be thought of

as lying somewhere between the fully Bayes and semi-Bayes approaches. Many authors in various

fields have advocated the use of hierarchical models, and we suggest Tomlins and others (2005),

Tusher and others (2001) and Barlow and others (1972) both for introductions to hierarchical

models and for more formal and detailed accounts.

Hierarchical modeling approaches offer many advantages over conventional methods. The abil-

ity to, easily and in a coherent framework, include relevant additional information—information

that will help to inform on the disease/trait of interest—is one of the main advantages of this

methodology. Hierarchical models offer better and more stable estimates of parameters than

conventional methods. In general, estimates that are extreme and/or unstable become more rea-

sonable in the hierarchical model setting and those parameter estimates that are more moderate

remain so in the hierarchical approach (Gichangi and Vach, 2006).

As previously mentioned, the P -value is the predominant measure used in ranking GWASs.

Other authors have advocated using effect sizes rather than P -values in various settings, including

in the detection of influential genetic markers (Rieger and others, 2004; Tomlins and others, 2005;

Tusher and others, 2001). In the present context, the effect size can be thought of as indicating

the “quantitative importance” (Gichangi and Vach, 2006) of the association. On the other hand,

the P -value does contain information on the magnitude of the effect size but this is confounded by

the fact that it also contains information on the precision with which the effect size is measured.

For example, 2 markers having the same P -values may have very different effect sizes as a result
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of having very different minor allele frequencies (MAFs). Thus, it is clear that the use of P -values

for ranking associations may not always be ideal. As well as being useful for the prediction of

risk, the empirical Bayes hierarchical effect estimates can potentially be used in the ranking of

associations and in the goal of false-positive reduction.

In the present context, the hierarchical modeling approach permits the relaxation of the

assumption that all SNPs act similarly and allows for the SNP effects to vary, depending on the

additional genetic information. Incorporating this additional information should help to control

for false-positive associations that may be observed using conventional tests. Here, we present a

2-level hierarchical model and, depending on how the model is viewed, the interpretation of the

role of the additional biological information may change. For example, in the frequentist setting,

the multilevel model can be viewed as a mixed model with both fixed and random effects. If on the

other hand, the model is viewed from a Bayesian perspective, the additional genetic information

may be entering the model in the form of a prior distribution (see Section 1 of the supplementary

material [SM] available at Biostatistics online).

Earlier hierarchical modeling approaches allowing for the incorporation of additional biological

information for smaller scale association studies include Barlow and others (1972), who used a

logistic regression model for the first level, in an SNP association study for candidate genes in

bladder cancer. As well as including biological factors in the second level of the model, the authors

also included environmental factors and considered interaction effects in the first level.

Wahba (1990) provide a hierarchical regression modeling approach, the first level of which is

based on the positive root of a 1-degree of freedom (df) χ2 statistic, xm, which has a noncentral

χ distribution with 1 df and noncentrality parameter λm. The λm, which are of main interest,

indicate the strength of association and in turn are modeled using a mixture model, allowing the

incorporation of any prior knowledge of association. The prior depends on additional covariate

information such as, for example, whether the marker is located in an exon, or a splice junction



6 E. A. Heron and others

site, its predicted effect on protein conformation, or prior linkage, or association evidence. The

authors compare various empirical and fully Bayesian schemes for this modeling framework using

simulated data, where performance is assessed in terms of power.

Brown (1989) also propose a 2-level hierarchical modeling approach and explore both empirical

Bayes and semi-Bayes approaches. For their empirical Bayes approach, they develop a structured

weighting function that reflects the residual variation in the first-level estimates that remains

after the second-level covariates have been taken into account. This weighting function is designed

to give more support to particular markers based on one or more different types of additional

biological information. For example, those markers with higher previous linkage or association

scores may be weighted more heavily. They apply their methods to both GWA SNP data and

gene expression data.

SAS Institute (1999) presents both empirical Bayes and semi-Bayes adjustments that shrink

the conventional effect estimates toward an overall average effect. For the empirical Bayes method,

rather than using additional covariate information, the author sets the prior mean effect for all

SNPs to be zero. The author applies the method to a GWAS on Type 2 diabetes (T2D) with the

first-level estimates arising from the Cochran–Armitage test for trend. The author also explores

a semi-Bayes approach.

Most of the analyses cited above consider the application of the empirical Bayes hierarchical

model (EB-HM) to experimental data sets only and, even where they do include the use of

additional covariate information, do not present any exploration of the sensitivity of the approach

to this information. The exception is Fimmers and others (1989) who in contrast do not present

any application to experimental data but restrict their attention to simulation studies. In this

paper, we aim to bridge the gap between simulated and experimental GWA data by developing

a straightforward model that facilitates clearer comparison of the behavior of the methodology

between both data types. In particular, we examine the impact of the inclusion of both informative
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and noninformative additional information. We are presenting a widely applicable methodology

to incorporate additional biological information that allows the nonsubjective determination of

the influence of this additional information. The methodology provides effect estimates that can

be used for ranking purposes to prioritize markers for further study.

We present a 2-level EB-HM for the analysis of individual marker GWA data, focusing on

the case–control study design. This modeling framework consists of a first-level logistic regression

model for each individual SNP with a second-level regression, incorporating additional biologically

relevant information. An empirical Bayes approach, using techniques proposed by Barlow (1972),

to iteratively estimate prior parameters in the model using the available data, is proposed. A

key advantage of this empirical Bayes approach is that it does not rely on the subjective input

of the practitioner in setting prior information but instead uses the available data to obtain

parameter estimates. Previous examinations of the empirical Bayes approach have highlighted

the conservative nature of the methodology, in particular when compared to the subjective semi-

Bayes approaches (Castelloe and Zimmerman, 2002; Schwender, 2007). We acknowledge that our

objective approach presented here is conservative and, in our implementation, results in effect

sizes (odds ratios) that may be underestimated. Our simulation studies present evidence of this;

however, this conservatism does not compromise the ranking and identification of associated

markers—as evidenced in both our simulation and experimental data applications.

We explore a comprehensive simulation study that shows the effectiveness of our approach

when truly relevant additional biological information is included. We also demonstrate, through

simulations, the effect of applying this methodology when noisy, incomplete information is in-

cluded. Although we do not incorporate linkage disequilibrium (LD) in our simulation studies,

we do not feel this is a major drawback. In identifying variants that are associated with the

phenotype of interest, the usual single-level approach can result in a set of markers being identi-

fied that are correlated with each other to varying degrees. Each of these variants is not usually
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treated as a separate association signal but rather the region is identified. If LD is of concern, the

approach of LD pruning could first be employed—resulting in a set of independent, uncorrelated

markers. Also, markers that are in LD with those in functional regions can be identified and

such information incorporated in the additional covariate information, as we demonstrate in our

experimental data applications. We also assess our proposed model extensively in terms of power

and false-positive rates under various scenarios. We conclude by applying the methodology to 4

of the Wellcome Trust Case Control Consortium data sets: T2D, coronary artery disease (CAD),

Crohn’s disease (CD), and rheumatoid arthritis (RA) (Allison and others, 2006).

2. Methods

In our development of the methodology for the hierarchical model, we will concentrate on the

case–control study design. Here, we present a 2-level EB-HM. The first level comprises a logistic

regression model, and the second level comprises a Gaussian regression incorporating additional

biologically relevant information.

2.1 First level—logistic regression

The first level, in the 2-level hierarchical model for case–control type data, consists of the anal-

ysis of the individual SNPs; independently testing for associations between the individual SNP

markers and case–control status. Given N individuals, a proportion of which will be cases and the

remaining individuals controls, proportions that need not necessarily be equal, for each of the M

SNPs we propose using a logistic regression model to test for association. The logistic regression

model is chosen as it is a flexible model choice, allowing for the incorporation of various genetic

models (e.g., additive, recessive, and dominant) which may be thought to underlie the disease or

trait under consideration. The logistic regression approach also allows for the inclusion of addi-

tional phenotypic information through the inclusion of additional covariates. For the phenotype
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data (case–control status), for i = 1, . . . , N individuals, let yi = 1, if individual i is a case, and let

yi = 0, if individual i is a control. For the genotype data, for m = 1, . . . ,M , we let Xmi denote

the genotype for individual i at marker m. The genetic model may be incorporated here through

the choice of coding for the number of minor alleles (from here on referred to as the allele) at

the particular marker locus. For example, for an additive model, Xmi, takes the values 0, 1, or

2, indicating 0, 1, or 2 copies of the allele. For a dominant model, Xmi can take the values 0 or

1, 0 indicating 0 copies of the allele and 1 indicating one or 2 copies of the allele. Similarly, other

genetic models may be incorporated.

The logistic regression model is given by the following equation:

log

(
pmi

1− pmi

)
= logit(pmi) = αm + βmXmi, (2.1)

where pmi is the probability of individual i being a case given that they have genotype Xmi at

marker m. αm, the baseline risk of disease, is the log odds for an individual having the disease

given that they have the homozygous genotype for the major allele (i.e., they have 0 copies of the

minor allele). The βm are an estimate of the increase in odds of being a case for each additional

allele (assuming additive model) on the log-odds scale and are thus an estimate of the effect size.

Where available, additional phenotypic information, such as that previously mentioned, may be

incorporated through the inclusion of additional covariates and their corresponding coefficients

in (2.1), but for simplicity, we will not include these here. The statistical significance of the

association can be tested using the Wald statistic, given by
(
β̂m/SE(β̂m)

)2
∼ χ2, where β̂m is

the maximum likelihood estimator (MLE) of βm and SE
(
β̂m

)
is its associated standard error.

In the usual approach to analyzing GWAS data, the resulting P -values would be ranked in

ascending order, and a P -value threshold (such as genome-wide significance; Dudoit and others,

2002) used in order to determine which SNPs to investigate further. A logistic regression model

has been used in Irizarry and others (2003), Lyons-Weiler and others (2004), and Rieger and

others (2004), for example, to detect SNP associations in GWASs for various diseases. Our aim is



10 E. A. Heron and others

to include additional biologically relevant information in our analysis through the incorporation

of a second-level regression equation in our model.

2.2 Second level—regression

The second level of the model aims to improve the estimates of the βm through the inclusion of

additional biological information. This is facilitated through the inclusion of a second regression

equation given by

β = Zγ + τ2T, β = (β1, . . . , βM ) , βm ∼ Normal
(
Zmγ, τ

2tmm

)
, (2.2)

where Z is an M ×K matrix containing K columns of additional biological information. Thus,

for each βm (and thus each marker m), there is information on each of the additional biologically

relevant covariates. There is no restriction on the values the entries in the matrix Z can take.

For example, negative entries could be used to indicate that a particular covariate was expected

to have a negative or opposite effect (protective) in contributing to susceptibility to disease. For

the type of information included in Z, it will often be the case that many of the entries will be

binary, indicating membership of a particular functional class, for example, SNPs in introns.

The vector γ is a K × 1 vector of second-level regression coefficients. τ2T is a variance–

covariance matrix representing the residual variation in the βm’s that remains after the second-

level covariates in the Z matrix have been taken into consideration. Thus, τ2T reflects any

unmodeled and unaccounted-for variability which could be due to, for example, interaction effects

between the second-level covariates or covariates not included. Correlation structure between the

SNPs would be modeled in the off-diagonal entries of the T matrix. If no correlation structure is

to be modeled, which can reduce the computational burden, then T can be defined as the identity

matrix. Tomlins and others (2005) follow a similar rationale in defining T .

In Section 1 of the SM available at Biostatistics online, we explore the mixed model and

Bayesian interpretations of combining (2.1) and (2.2) which can help clarify the roles played by



Empirical Bayes hierarchical modeling for GWAS 11

the various components of the model.

2.3 Combining first- and second-level effect estimates

We combine the first-level estimates and the second-level means for the βm using the hierarchical

estimator:

β̂m;EB = BmZmγ + (1−Bm) β̂m. (2.3)

Equation (2.3) is sometimes referred to as a shrinkage estimator (Tusher and others, 2001) because

the first level usual estimators, βm, are shrunk toward, or averaged with, the second-level means

Zmγ. The shrinkage factor Bm indicates how much the second-level mean Zmγ contributes to

the estimate βm. Gichangi and Vach (2006), in his analysis, sets Zmγ to be zero for all SNPs, as

it is felt that this could be a reasonable choice in GWAS applications. If the first-level estimators

are highly variable, with respect to the total variability, they will be shrunk toward the more

stable estimate, Zmγ, thus reducing the variability. On the other hand, if the logistic regression

estimates have small variability, then these estimates will not be shrunk as much toward the

second-level means. The important question is how to determine the shrinkage factors {Bm}.

There are various methods of choosing/estimating these, for example, empirical Bayes, semi-

Bayes, and fully Bayesian approaches. Here, we will only concentrate on using an empirical Bayes

estimator. Just as the means for the second-level model are estimated from the data, we will

also estimate the prior means, and consequently, the shrinkage factors, using the data. This is

in contrast to the semi-Bayes approach that would rely on the subjective judgement of the data

analyst in setting the prior means.

We will use the empirical Bayes iterative approach described in Barlow and others (1972)

to estimate the shrinkage factors. Further details are given in Section 2 of the SM available at

Biostatistics online.
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2.4 Simulation strategy

To evaluate and explore the performance of the approach proposed here, we simulated case–

control genotype data for a number of markers. The multilevel format of the model allows for

a clear simulation framework, the natural starting point for the simulation being the second-

level regression equation. Full details of the simulation strategy are given in Section 3 of the SM

available at Biostatistics online.

3. Results

3.1 Simulation study application

To examine the efficiency of the proposed method for the better identification of the associated

markers, we simulated case–control genotype data for 200 markers for each of 500 cases and 500

controls. We randomly simulated the MAFs on the interval (0.01, 0.5) and chose a dominant

genetic disease model with a disease prevalence of 0.05. Of the 200 markers, 3 markers were

randomly chosen to have higher odds ratios than all other markers (markers 44, 123, and 184).

The matrix Z contained 5 columns of additional covariate information, simulated from a Binomial

distribution. The first column of the Z matrix was chosen as the most informative, and for the

randomly chosen markers, the corresponding entries in this column of Z were increased. The aim

was to detect these markers as associated markers, while also minimizing the number of false

positives. The results of this simulation study can be seen in Figure 1. The residual variation

that remains in the first-level coefficients, after the second-level additional covariate information

is included, is modeled by τ2 and was set at 0.01 in the simulation study. This is well estimated

with the empirical Bayes approach as τ̂2 = 0.00723. As can be seen in Figure 1, the EB-HM

performs well in comparison to the MLEs of the logistic regression model, both in the detection

of the markers with higher odds ratios and in the decrease of false-positive findings through the
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reduction of the standard errors.

We also compared the performance of the modeling framework with respect to estimating

the true odds ratios over a number of random simulations. As noted by Wahba (1990), the

effect estimates can be used for risk prediction and they give an indication of the quantita-

tive importance of putative associations. To do this, we use the mean square error MSE =

M−1
∑

m (est(OR)− true(OR))
2
, where the est(OR) is either the odds ratio as estimated by

the MLE from the logistic regression or the empirical Bayes estimate of the odds ratio, and the

true(OR) is the simulated odds ratio. The MSE captures the degree to which the estimator dif-

fers from the true odds ratio, which can either be due to the stochastic nature of the process or

the poor performance of the estimator. We examine the MSE across 100 random simulations for

both the MLE and for the empirical Bayes hierarchical modeling estimators and compare them

in Figure 1(a) of the SM available at Biostatistics online. We also plot the proportion of MAFs

that are < 5% in each simulation. This is done to explore the possibility that simulations with

many markers with low MAFs, which could lead to decreased power to detect associations, may

be influential in the behavior of the estimators. There does not appear to be any evidence for

this.

The simulation studies so far have used the same Z matrix, containing the same additional

covariate information, in both the data simulation and the analysis phases. For experimental data,

it will almost always be the case that such exact information will not be available. To examine the

situation where additional noisy and incomplete information is provided in the analysis phase,

we explored the scenario where a different Z matrix, Ẑ, is used in the analysis stage to that

used in the simulation phase. In the simulation phase, Z is used, but in the analysis phase,

we use Ẑ = Zk−1 + e, where e ∼ Normal(0, 1) and Zk−1 is the Z matrix with one column of

extra covariate information omitted. All other parameters are similar to those in the simulation

studies described above. The results of this simulation study can be seen in Figure 2. τ2 is set
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again at 0.01, and τ̂2 is estimated as 0.00584. The EB-HM still performs better than the single-

level MLE estimates from the logistic regression. The aim would be that the empirical Bayes

model should not perform less well than the single-level model, that is, that the additional noisy

and incomplete information should not lead to dramatically different conclusions regarding which

markers are believed to be associated. For this simulation scenario, we also simulated 100 random

simulations and compared the MSE for both the empirical Bayes estimators and the MLEs. As

can be seen in Figure 1(b) of the SM available at Biostatistics online, the empirical Bayes model

still outperforms the single-level logistic regression model when considering the estimation of the

odds ratios.

Finally, we show that the model does offer substantial improvements over the usual single-

level model by examining the sensitivity and specificity of the model for simulated data. We use

receiver operating characteristic (ROC) curves to assess these. In order to access the sensitivity

(power) and specificity (1 false-positive rate), we generated 1000 random simulations, each having

2 random markers (out of 200) with higher odds ratios and used the same Z covariate matrix

in the analysis and generation phases. We also carried out this same scenario for 15 random

markers with higher odds ratios. As can be seen from the ROC curves in Figure 3(a) and (b),

EB-HM performs substantially better than the MLE when relevant informative information is

provided (Figure 3(a) area under curve [AUC] MLE: 0.896, EB-HM: 0.998; Figure 3(b) AUC MLE:

0.896, EB-HM: 0.999). To assess the performance when noninformative information is provided

in the Z covariate matrix, as may be the case in experimental analyses, we also carried out the

same simulation strategy as just described but used positive random noise (abs[Normal(0, 1)])

for a reduced number of covariates (5 columns in Z in data generation phase, and 4 columns in

analysis phase). Examining Figure 3(c) and (d), it is clear that the model is robust in the face

of wrong, uninformative information and performs just as well as the MLE method, (Figure 3(c)

AUC MLE: 0.896, EB-HM: 0.889; Figure 3(d) AUC MLE: 0.897, EB-HM: 0.903).
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3.2 Application to WTCCC 2007 data sets

We present applications of our methodology to CAD, CD, RA, and T2D data sets from the

SAS Institute (1999). Several of the genetic associations presented in Brown (1989) have been

replicated. All data sets were quality controlled to include SNPs with MAF > 0.01 and a Hardy–

Weinberg equilibrium threshold of P < 10−4 in both cases and controls. This resulted in 2938

controls and CAD: 1926, CD: 1748, RA: 1860, and T2D: 1924 cases. We examined autosomal

SNPs (CAD: 380442, CD: 380664, RA: 380481, and T2D: 380463) that had additional covariate

information available.

The covariate information that constitutes the Z matrix for each of these data sets consisted of

20 categories of additional functional information for each SNP. Specifically: 11 binary categories

(Downstream, Essential Splice Site, Intergenic, Intronic, Non-Synonomous Coding, Regulatory

Region, Splice Site, Stop, Synonomous Coding, Upstream, and Untranslated Region (UTR)) and

9 linkage disequilibrium sum (LDSUM) categories (LDSUM Downstream, LDSUM Frameshift

Coding, LDSUM Intergenic, LDSUM Intronic, LDSUM Non-Synonomous Coding, LDSUMStop,

LDSUM Synonomous Coding, LDSUM Upstream, and LDSUM UTR). The scoring used for the

binary covariate categories is as follows. For example, if an SNP scores a 1 for the intronic region,

this indicates that the SNP is contained in an intron, similarly for the other binary categories.

For a particular marker, the LDSUM categories denote the number of SNPs that are proxy

SNPs (in LD) belonging to the various functional categories. For example, if an SNP has 4

proxies; 2 coding, 1 UTR, and 1 intergenic, then this SNP will score 2 on LDSUM Frameshift

Coding, 1 on LDSUM UTR, and 1 on LDSUM Intergenic. The tool SNAP (Fimmers and others,

1989) was used to identify proxy SNPs within a 500 kb window using HapMap CEU genotypes.

The tool GeneCruiser (Barlow, 1972), using a variety of databases, was integrated with SNAP,

and together with custom PERL scripts, was used to facilitate these functional annotations of

the SNPs. A linkage category was also incorporated in Z, for the T2D data set. This column
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consisted of linkage scores from a reanalysis of a linkage meta-analysis carried out by Castelloe

and Zimmerman (2002). This meta-analysis originally contained a UK sample, which may have

included WTCCC individuals and so to eliminate any potential sources of bias, the UK sample was

removed from the meta-analysis and the scores recalculated. The linkage scores are for 115 bins

across the genome (excluding the sex chromosome). This type of information was not available for

the other disease data sets due to sample overlap. First-level logistic regression odds ratios and

standard errors were obtained using Plink (Schwender, 2007). We make the assumption that the

residual variation τ2, that remains in the first-level coefficients after the second-level additional

covariate information is included, is the same across all markers.

3.2.1 Coronary artery disease. For CAD, the Allison and others (2006) found a notable new

finding on chromosome 9p21.3 with the strongest signal seen at rs1333049. In both our first-

level logistic regression analysis and in our EB-HM analysis, this marker is also our top signal

(MLE OR = 1.37, P -value = 2.3 × 10−14, EB-HM OR = 1.03, P -value = 0.016). This signal

has been replicated in a German sample (Dudoit and others, 2002), showing a slightly reduced

odds ratio = 1.33 (95% confidence interval [CI] 1.18–1.51). Two other loci on chromosome 6q25.1

(rs6922269) and on chromosome 2q36.3 (rs2943634) also showed moderate association with CAD

in the Irizarry and others (2003) analysis and were replicated (Lyons-Weiler and others, 2004).

These markers also appear in our top list when ranking is carried out using the EB-HM approach,

see Table 1 for further details. For the CAD data set, τ̂2 = 0.000199.

3.2.2 Crohn’s disease. A number of loci that were previously identified as being associated with

CD were also found to be associated in the Tomlins and others (2005) data and these also rank

highly here based on our EB-HM approach (rs17221417, rs11805303, rs10210302, rs10761659,

and rs17234657). A set of novel loci (rs1000113, rs9858542, rs10883365, and rs2542151) that have

been replicated (Tusher and others, 2001) were also identified and these too rank highly in our
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EB-HM analysis. The top ranking marker based on MLE ranking is rs2076756 on chromosome 16.

This marker has been replicated (Gichangi and Vach, 2006) and in our EB-HM ranking appears

in the top 150 markers. Unlike the other 3 disease data sets, we have considered here, where

the top ranked markers have agreed very closely when ranked separately based on the MLE and

EB-HM results, this is not the case with the CD data set. Here, the top 120 ranked markers based

on EB-HM ranking all come from chromosome 17q21 and details of the top 2 of these markers

(rs916793 and rs17691328) are given in Table 1. Loci on chromosome 17q21 (different markers)

have subsequently been identified as novel CD–associated loci (Barlow and others, 1972). For the

CD data set, τ̂2 = 0.00036.

3.2.3 Rheumatoid arthritis. Previous associations between RA and the human leukocyte anti-

gen region and the PTPN22 gene on chromosome 1p13 were also found in the WTCCC (2007)

analysis. The most associated marker for PTPN22 was rs6679677 (MLE OR = 1.95, P -value

= 2.86 × 10−25) and is also highly ranked in the EB-HM analysis (EB-HM OR = 1.04, P -value

= 0.01). The top ranking marker in the first-level analysis (rs6457617, MLE OR = 2.26) on

chromosome 6 is also the top ranking marker in the EB-HM analysis (EB-HM OR = 1.1). See

Table 1 for further details. For the RA data set, τ̂2 = 0.00027.

3.2.4 Type 2 diabetes. Previously identified loci on chromosomes 3, 10, and 11 were replicated

in the Wahba (1990) study (rs4506565, rs1801282, and rs5215). Marker rs4506565 is ranked first

by both the MLE and the EB-HM approaches, and rs1801282 and rs5215 appear further down in

both rankings. Two other signals were also identified on chromosome 16q (rs8050136, rs9939609,

and rs7193144) and on chromosome 6p22 (rs9465871) and all associations are highly ranked with

both the MLE and the EB-HM approaches as can be seen in Table 1. For the RA data set,

τ̂2 = 0.000234.

In Figure 4, we have plotted the MLE odds ratios from the first-level logistic regression model
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(first level) and the empirical Bayes odds ratios. The reduction in effect sizes in EB-HM markers

compared to the MLE odds ratios can clearly be seen. But previously identified signals appear

highly ranked when considering EB-HM ranking (examples in Table 1, black points in Figure 4

plots). Figure 2 of the SM available at Biostatistics online presents details of the top 200 markers,

using EB-HM ranking, as they appear along the genome (not-scaled) for each of the 4 diseases.

4. Discussion

In this paper we explore an empirical-Bayes two level hierarchical model that aims to better

detect associated markers and provide more robust effect estimates in GWASs than the usual

single level analysis typically carried out. This is done through a hierarchical modeling framework

that allows the inclusion of additional biological information that is relevant, such as functional

information or prior linkage or association information. This additional relevant biological in-

formation is included in a structured framework through a second-level regression equation. An

existing iterative empirical Bayes method is used to assign prior means in the model and thus

eliminates any subjective input that might be required by the practitioner, such as in semi-Bayes

approaches.

Our aim was to explore how well this modeling framework worked with regard to detecting

associations and obtaining robust effect estimates. In order to do this, we first examined the

method in an extensive case–control simulation study that demonstrates how effective the method

is when truly relevant additional biological information is incorporated—improving the P -value

significance and giving better estimates of the odds ratios and reducing the standard errors, as

can be seen in Figure 1. We also assessed the approach in terms of power and false-positive

rates, under various scenarios, showing that when relevant informative covariate information is

incorporated, the EB-HM approach performs better than the usual single-level model, see Figure

3(a) and (b). We also demonstrate, through simulation, that the EB-HM still performs well even
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when relevant information is omitted and noisy information is incorporated, although there is

considerable reduction in the size of the odds ratios and in the level of significance of the P -values

(see Figure 2). When uninformative noise is incorporated, the EB-HM approach performs as well

as the single-level model in terms of power and false-positive rates, see Figure 3(c) and (d). This

is an important demonstration as in real experimental applications it will rarely, if ever, be known

how relevant the additional covariate information is. Thus, we show that our methodology is not

adversely affected by the inclusion of unreliable additional data thereby ensuring robustness for

practitioners when considering incorporating additional biological information.

The simulation studies do attempt to model as closely as possible the situation in experimental

GWA data, but we acknowledge that there is no modeling of LD, as the genotypes for each

individual are simulated independently. Nevertheless, as discussed in Section 1, we feel that this

should not impact on the validity of the evaluation of the proposed modeling framework. The

simulation studies also contain many fewer markers than would be contained in a GWAS, but this

is only for demonstration purposes and could easily be extended to larger numbers of markers.

Also, here we have concerned ourselves with the case–control study design, but it would be just

as easy to consider the hierarchical model framework for family trio GWA data sets. For this

study design at the first level, we would perform a logistic regression on the usual transmission

disequilibrium data.

Previous applications of this type of modeling framework have not presented results for full

GWA data sets that include additional covariate information that is believed to be informative.

Thus, we have applied this methodology to 4 of the Brown (1989) data sets and included additional

covariate information in the form of both functional information and prior linkage information

(T2D only) that we believed would be informative. Across all 4 data sets, there is a reduction

in the odds ratios and also the P -values have been increased considerably due to the reduction

in the EB-HM odds ratios and their corresponding standard errors. Importantly, however is that



20 E. A. Heron and others

in the ranking of the association results based on the EB-HM approach, all previous identified

and replicated signals are still highly ranked, agreeing with the MLE rankings, see Table 1. The

EB-HM analysis of the CD data set does result in the top ranking of a region on chromosome

17q21 that had not been identified in the SAS Institute (1999) study, while still maintaining all

previously associated and replicated associations as also highly ranked. The top ranked markers,

according to the empirical Bayes P -values, correspond to the highest empirical Bayes odds ratios,

which is not the case for the MLE P -value ranked odds ratios as can be seen in Figure 4. As

noted by Fimmers and others (1989), with GWA data sets, the winner’s curse effect often comes

into play and in looking for markers of high risk, the first-level estimates are often overinflated.

As can be seen in the simulation studies, the empirical Bayes approach does not suffer from this

problem, a key advantage of this approach.

We compared the T2D results obtained here with those obtained by Barlow (1972), who

analyzed an almost identical WTCCC T2D data set (same number of cases and controls but

slight difference in number of SNPs) using an empirical Bayes methodology, but who included no

additional biological information, instead setting the prior mean effect for all SNPs to be zero.

Our results did not differ considerably from Strömberg’s when we included what we believed

to be relevant covariate information. In particular, the odds ratios and standard errors of our

estimates do not appear to be very different (comparison of our results with figure presented in

Castelloe and Zimmerman (2002)). Also Allison and others (2006) obtained a τ̂2 = 0.00022, which

represents the residual variation that remains in the first-level coefficients, after the second-level

covariates have been taken into account. This is almost identical to our estimate of τ̂2 = 0.000234.

As pointed out by Dudoit and others (2002) and Irizarry and others (2003), among others, the

empirical Bayes approach can sometimes be too conservative, resulting from too much shrinkage.

Here, this conservatism manifests itself in the effect sizes, that is, the odds ratios of the EB-

HM perhaps being underestimated and being closer to 1 than is actually the case. There is
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evidence for this in the simulation studies presented here and is also likely in the Lyons-Weiler

and others (2004) applications, although the true effect sizes are often not known. For example,

for the T2D data set, marker rs8050136 has an MLE OR = 1.27 and an EB-HM estimated

OR = 1.03. In replication studies (Rieger and others, 2004), this OR does vary substantially

from 1.27, ranging from 1.03 (95% CI: 0.91–1.17) to 1.22 (95% CI: 1.12–1.32), and a combined

sample OR = 1.17 (95% CI: 1.12–1.22). Thus, it would appear that even in replication studies a

range of effect sizes can be observed, and it can be difficult with experimental data applications

to judge how conservative the effect estimates are. For the simulation studies, the conservative

behavior can be seen in particular in Figures 1(b) and 2(b), where the odds ratios are typically

to be found in narrower ranges than the true simulated odds ratios. This excessive shrinkage and

conservative nature of the empirical Bayes approach is often a reason why semi-Bayes approaches

are preferred. Both Tomlins and others (2005) and Tusher and others (2001) also consider semi-

Bayes approaches, where the amount of shrinkage can be hand tuned. We feel this can be too

subjective, as there is no available information to guide the choice of shrinkage in scenarios outside

of simulation studies. The empirical Bayes approach offers the advantage of the practitioner

not having to set parameter values, which may be more attractive in situations where limited

knowledge is available.

The empirical Bayes approach to analyzing the Gichangi and Vach (2006) data sets has not

resulted in P -values of genome-wide significance, but this should not lead to the conclusion that

the method is inapplicable. A number of important points need to be borne in mind: as noted

above, the empirical Bayes approach is known to be conservative in its estimates of association

and is designed more to stabilize estimates of effect size. When ranking of the association results

based on the EB-HM approach is considered, all signals previously identified (Barlow and others,

1972) and replicated appear highly ranked. Furthermore, the simulation studies presented here

have shown that if the covariates carry relevant information, their inclusion in the second stage can
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significantly improve the empirical Bayes estimates. In the case of the WTCCC data applications,

we conclude that the additional covariate information we have included, although we believe it

to be informative and relevant, may not be so in the current model formulation, except perhaps

in the case of the CD data set. We have only considered a linear model in our second-level

model and this may not be adequate for the incorporation of this information. It may also be

the case that sufficient information in this data set is contained in the first level of the model

to determine significance, and the second-level covariate information adds little in determining

association. Because of our extensive examination, using simulation studies, of the impact of

noisy and incomplete additional information, including examination of power and false-positive

rates, we believe that the inclusion of the covariate information is not having a negative impact

on the ranking of the markers. Further work in identifying other informative covariates, and in

assessing alternative models for the influence of the covariates, could help to shed light on these

matters.

5. Software

Software in the form of R code, together with a sample input data set and complete documentation

is available on request from the corresponding author (eaheron@tcd.ie).

6. Supplementary Material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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Fig. 1. Results of a simulation study with 200 markers, for each of 500 cases and 500 controls. Markers 44,
123, and 184 are 3 random markers chosen to have higher odds ratios, and these are indicated in black, all
other markers are in gray. The MAF for each marker was randomly simulated from Uniform(0.01, 0.5).
The same Z matrix was used in both the simulation and analysis phase. (a) For both the MLEs and the
empirical Bayes estimators (EB-HM), − log10(P-value) are shown. (b) The true odds ratios used in the
simulation study together with MLE and empirical Bayes estimators of the odds ratios. (c) Confidence
intervals for the logistic regression MLEs of the odds ratios. (d) Approximate confidence intervals for the
empirical-Bayes estimated odds ratios.
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Fig. 2. Results of a simulation study with 200 markers, for each of 500 cases and 500 controls. Markers
12, 98, and 182 are 3 random markers chosen to have higher odds ratios and these are indicated in black,
all other markers are in grey. The MAF for each marker was randomly simulated from Uniform(0.01, 0.5).
An alternative Z matrix was used in the analysis phase to that used in the simulation phase. (a) For
both the MLEs and the empirical Bayes estimators (EB-HM), − log10(P-value) are shown. (b) The true
odds ratios used in the simulation study together with MLEs and empirical Bayes estimators of the
odds ratios. (c) Confidence intervals for the logistic regression MLEs of the odds ratios. (d) Approximate
confidence intervals for the empirical-Bayes estimated odds ratios.
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Fig. 3. (a) ROC curves for both MLE estimates and EB-HM estimates based on 1000 random simulations
of 500 cases and 500 controls, 200 markers with 2 causative markers. Same Z covariate matrix used in
both generation and analysis phases. (b) Same as plot (a) except 15 causative markers are simulated.
(c) Same as (a) except Z is random positive noise (abs[Normal(0, 1)]) in the analysis phase. (d) Same as
plot (c) except 15 causative markers are simulated.



REFERENCES 29

Fig. 4. MLE of the odds ratios (first-level logistic regression model) and the empirical Bayes estimators
(EB-HM) of the odds ratios for the autosomal markers (gray points) for (a) CAD, (b) CD, (c) RA, and
(d) T2D. Points in black are the markers detailed in Table 1 for each of the disease data sets.
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Table 1. A subset of the strongest associated markers for each of the 4 Rieger and others (2004)
data sets (CAD, CD, RA, and T2D). MLE-OR(SE) refers to the logistic regression maximum
likelihood odds ratio estimate and the standard error of the log(MLE OR) as calculated for the
analysis carried out here. MLE rank refers to the ranking of the marker based on the MLE P-value.
EB-HM-OR(SE) refers to the EB-HM odds ratio and the standard error of the log(EB-HM OR).
The EB-HM Rank refers to the rank of the marker based on the EB-HM P-value and the effect

size (ES) Rank refers to the ranking based on the EB-HM odds ratios

Dis Chr Marker MLE-OR MLE MLE EB-HM-OR EB-HM EB-HM ES
(SE) P-value rank (SE) P-value rank rank

CAD 2 rs2943634 1.22(0.04) 1.23 × 10−5 32 1.02(0.01) 0.19 28 37
CAD 6 rs6922269 1.23(0.05) 6.58 × 10−6 22 1.02(0.01) 0.2 37 44
CAD 9 rs1333049 1.37(0.04) 2.3 × 10−14 1 1.03(0.01) 0.016 1 1

CD 1 rs11805303 1.37(0.04) 8.1 × 10−13 7 1.05(0.02) 0.003 120 120
CD 2 rs10210302 1.39(0.04) 9.1 × 10−14 2 1.05(0.02) 0.004 123 123
CD 3 rs9858542 1.26(0.05) 8.16 × 10−7 71 1.03(0.02) 0.1 313 308
CD 5 rs1000113 1.52(0.08) 6.38 × 10−8 48 1.03(0.02) 0.169 701 512
CD 5 rs17234657 1.54(0.06) 3.34 × 10−13 5 1.04(0.02) 0.02 147 154
CD 10 rs10761659 1.24(0.04) 2.8 × 10−7 61 1.03(0.02) 0.05 221 211
CD 10 rs10883365 1.28(0.04) 1.53 × 10−8 30 1.04(0.02) 0.02 142 152
CD 16 rs17221417 1.36(0.04) 1.14 × 10−11 16 1.05(0.02) 0.008 128 128
CD 16 rs2076756 1.44(0.05) 8.35 × 10−15 1 1.05(0.02) 0.003 121 121
CD 17 rs916793 1.2(0.05) 0.0003 490 1.09(0.02) 1.68 × 10−6 2 2
CD 17 rs17691328 1.21(0.05) 0.0003 448 1.09(0.02) 1.58 × 10−6 1 1
CD 18 rs2542151 1.35(0.05) 5.1 × 10−8 44 1.03(0.02) 0.06 235 230

RA 1 rs6679677 1.95(0.06) 2.86 × 10−25 32 1.04(0.02) 0.01 52 52
RA 6 rs6457617 2.26(0.05) 2.17 × 10−72 1 1.1(0.02) 1.38 × 10−9 1 1

T2D 3 rs1801282 1.24(0.07) 0.0013 761 1.01(0.01) 0.38 2826 2228
T2D 6 rs9465871 1.29(0.05) 1.09 × 10−6 19 1.02(0.01) 0.15 42 42
T2D 10 rs4506565 1.37(0.04) 7.1 × 10−13 1 1.04(0.01) 0.02 1 1
T2D 11 rs5215 1.15(0.04) 0.00129 763 1.01(0.01) 0.347 1779 1787
T2D 16 rs7193144 1.27(0.04) 1.56 × 10−8 11 1.03(0.01) 0.048 11 11
T2D 16 rs8050136 1.27(0.04) 2.16 × 10−8 12 1.03(0.01) 0.05 12 12
T2D 16 rs9939609 1.26(0.04) 5.6 × 10−8 15 1.03(0.01) 0.06 15 15


