Draft

Peng Zhang

April 5, 2025

1 Introduction

Definition 1 Epigraph

We let $u: \mathbb{R}^d \to \mathbb{R}$ is a continuous function, the epigraph of u is a subspace of \mathbb{R}^{d+1}

$$epi(u) := \{ (x,\xi) \in R^d \times R | \xi \ge u(x) \}$$

Definition 2 Legendre-Fenchel transformation

Given an open set $\Omega \subset R^d$ and function $u : \Omega \to R$, the Legendre-Fenchel transformation of u is $u^* : R^d \to R \cup \{+\infty\}$ which defined below

$$u^*(p) := \sup_{x \in \Omega} \langle p, x \rangle - u(x)$$

Here p is an element of \mathbb{R}^d and $\langle . \rangle$ can be view as inner product. u^* is a function of p with respect to u. We can define Legendre dual through this transformation, thus the p become an element of $(\mathbb{R}^d)^*$ which is the dual space of \mathbb{R}^d , also called linear functional. Therefore, $\langle p, x \rangle$ is equal to p(x), because the inner product is equivalent to linear functional in finite dimension space according to Rize representation theory. $u^*: (\mathbb{R}^d)^* \to \mathbb{R}$

We set f is a functional of $(R^d)^*$, it is characterized by p, and $x \in R^d$

$$f(x) = p_1 x_1 + p_2 x_2 + \dots + p_d x_d = \langle p, x \rangle$$