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Research Motivation

Importance of Surgery Management:
e Operating rooms are the "engine" of hospitals, generating 40% of total revenue
¢ Consume significant physical resources (beds, equipment) and human resources
® Existing management practices fail to achieve performance targets

Core Challenges:
@ Surgery Duration Uncertainty - Actual completion times are unpredictable
® Disruptive Events - Equipment failures, random emergency arrivals

© Real-time Decision Requirements - Need to dynamically update surgery
allocation

Problem Severity:
e UK NHS: 1.1% of elective surgeries cancelled ( 79,470 cases//year)
e Capacity shortage is the main cancellation reason
® Long waiting times severely impact patient satisfaction
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Research Objectives & Contributions

Research Objective:
Establish a real-time surgery management optimization model for multiple operating
rooms, simultaneously minimizing:

® Number of uncompleted surgeries (weighted by urgency level)
® Patient waiting times (weighted by urgency level)
Main Contributions:

® Modeling Contribution: First to establish stochastic dynamic programming
model considering multiple uncertainties

® Algorithmic Contribution: Develop Approximate Dynamic Programming (ADP)
algorithm to solve curse of dimensionality

©® Empirical Contribution: Validate algorithm performance and practical
applicability using real data
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Literature Review & Research Positioning

Research Classification Framework:

Dimension Categories

Modeling Methods

Cost Com ponents Cancellation Cost (Cc), Waiting Time Cost (Wc)

Integer Programming (IP), Two-stage Stochastic Programming (TS), Markov Decision Process (MDP) ‘

‘ Decision Types ‘ Cancellation (C), Assignment (A), Patient Arrival (PA), Surgery Duration (SD)

Scheduling Approaches Proactive Scheduling (PS), Reactive Scheduling (RS)

Research Gap:
® Most studies focus on elective surgery scheduling
® Lack of comprehensive real-time management research considering all relevant
uncertainties
® Qverlooked dynamic nature of real-time surgery management
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Model Assumptions

@ Patient Arrival Pattern

® All elective patients arrive at beginning of day

® Emergency patients arrive randomly over time
® Surgery Execution Strategy

® No emergency surgeries are rejected

® Patients can wait until end of shift

® QOperating rooms can handle multiple surgery types
©® Decision Points

® Make allocation decisions whenever operating room becomes available
® Consider patient priority and waiting time
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State Space Definition

System State S; = (nq, T, p, a,w", £, f*)
Patient Information

® pn;: Total number of patients at time t
e 7: Surgery type of patient J

® p;: Priority of patient /

® 3;: Arrival time of patient i

System Status

* wf: Waiting status of patient / (1=waiting, 0=in surgery)
e (t: Patient ID currently assigned to room r

e f!: Completion status of room r (1=available, 0=occupied)
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Action Space & State Transition

Action Space
® Decision Variable: x! Patient assigned to operating room r
® Feasible Action Set: X! ={i:1<i<nflwf=1,p; € F,} U{0}
where F, is the set of surgery types that room r can perform
State Transition Mechanism
® Execute Actions: Update patient and room assignments
°* Emergency Arrivals: Randomly generate new patients

® Surgery Completions: Update completion status based on duration distributions
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Objective Function Design

Bi-objective Optimization Model
C(St) = ci(S) + (1 - a) zt: cw(S)
=1
Objective 1: Minimize Uncompleted Surgeries (VtVeighted)
cd(S') = i piw;
i=1
Objective 2: Minimize Waiting Time (Weighted)
cw(S") = ipf(t — aj)w;
i=1

Weight Parameter a Interpretation:ac = 0: Pure waiting time minimization; a = 1:
Pure completion number maximization; 0 < o < 1: Balance between two objectives
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Dynamic Programming Model

Bellman Equation

xEEX!

n
Vt(St) = min {(1 — CY) Zp,’(t +1- a,-)w,-”rl -+ E[Vt+1(5t+1)]}
i=1
Expected Value Calculation (Triple Uncertainty)

E[Vii1(Ses1)] = Ejen [E(f,ﬂ;) [EdX;[Vt—H(St—i-l)]H

® Emergency patient arrival numbers uncertainty
® Emergency patient characteristics uncertainty
® Surgery duration uncertainty
Boundary Condition
V7 (S7) = ca(ST)
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Approximate Dynamic Programming Architecture

ADP Core ldeas:
e Forward Simulation - Start from initial state, simulate system evolution
® Sampling Approximation - Only visit states on simulation paths
® Function Approximation - Estimate values of unvisited states
Main Algorithm Components:
® Lookup Table: Store values of visited states
® Double-pass Strategy: Forward exploration + backward update
® Basis Function Approximation: Handle unseen states

® Exploration-Exploitation Balance: c-greedy strategy
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Detailed ADP Algorithm Flow

Step 0: Initialize lookup table and parameters

Step 1: Sample path generation (Monte Carlo simulation)
Step 2: State generation and action evaluation

Random event generation (emergency arrivals, surgery completions)
Action selection (exploration vs exploitation)

Immediate cost calculation

Step 3: Value function approximation

Lookup table query

Basis function approximation (unvisited states)

Step 4: Backward pass update

Step 5: Convergence check
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State Space Compression Technique

Patient Clustering Strategy
Clustering Key:(arrival_time, priority, surgery _type)

Before vs After Compression

‘ Aspect ‘ Before Compression ‘ After Compression ‘

‘ State Representation ‘ Individual patient indexing ‘ Clustering by features ‘
| State Variables | wf e {0,1} | wie{0,1,2,..} |
| Complexity | O(2"max) | O(np.y) |

Practical Effects
® Elective patients: Divided into 3 categories by surgery type
® Emergency patients: Each patient independent (different arrival times)
® Computational efficiency: 10-room problems solvable within 2 hours
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Basis Function Approximation

Basis Function Design

VE(S,) = Zw,p, (- )Y wi(T - a)]
i=1

Feature Extraction
® Sum of priorities of currently waiting patients
® Weighted sum of remaining time for waiting patients
Parameter Estimation
® Method: Linear regression based on lookup table data
® Objective: Minimize prediction error sum of squares

® Update: Dynamically adjusted as algorithm progresses
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Experimental Design & Data Settings

Basic Experimental Parameters

Parameter ‘ Setting Reference

Planning Horizon ‘ 10 hours (20 half-hour periods) ‘ Jung et al. (2017)

| |
| |
‘ Number of Rooms ‘ 3 Basic experiment setting ‘
| |
| |

Surgery Types ‘ 3 types Jung et al. (2017)
Elective Patients ‘ 9 (3 per type) Experiment setting

Probability Distribution Settings
® Surgery Duration: Log-normal distribution
® Type 1: Mean 1.5, Std 1.7
® Type 2: Mean 2.5, Std 1.9
® Type 3: Mean 3.8, Std 1.9
® Emergency Arrivals: 12.5 % per period (1 patient), 4 % (2 patients
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Algorithm Performance Analysis

Small-scale Problem Validation
Problem Setting: 2 rooms, 6 periods, 5 electives, 2 surgery types

‘ Metric ‘ Exact DP ‘ ADP Algorithm ‘
‘ Computation Time ‘ 3.2 hours ‘ <1 minute ‘
| Action Match Rate | 100% | 95% |
‘ Optimality Gap ‘ 0% ‘ <5% ‘
‘ State Visits ‘ All ‘ Partial (sampling) ‘

Large-scale Problem Scalability
® 3 rooms: 17 minutes
® 5 rooms: <1 minute (with compression)
® 10 rooms: 2 hours (with compression)
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Comparison with Heuristic Methods

Myopic Policy Design
Cost Measure: ¢/, (i) = ap; + (1 — a)p;(t — a;) Decision Rule: Select patient with
highest cost

Performance Comparison (1000 random scenarios)

‘ Performance Metric ‘ ADP Policy ‘ Myopic Policy ‘ Improvement ‘
| Waiting Time | 89.19+0.79 | 96.74+0.54 | 7.8% |
‘ Completed Surgeries ‘ 8.81+0.07 ‘ 7.67+0.09 ‘ 14.9% ‘

ADP Advantage Analysis
® Forward-looking: Considers future random event impacts
® Global Optimization: Avoids local optima of myopic decisions
® Robustness: Strong adaptability to uncertainty parameter changes
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Parameter Sensitivity Analysis

Impact of Weight Parameter «

| Value | Waiting Time | Completed Surgeries | Policy Characteristics |

‘ 0.0 ‘ Minimum ‘ Fewer ‘ Favor quick surgeries ‘
‘ 0.5 ‘ Balanced ‘ Balanced ‘ L-curve corner point ‘
‘ 1.0 ‘ Higher ‘ Maximum ‘ Favor long surgeries ‘

Surgery Type Assignment Patterns
® « increases:Short-duration surgery assignment rate decreases
® « increases:Long-duration surgery assignment rate increases

® Explanation: When optimizing completion numbers, tendency to handle more
complex surgeries
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Management Strategy Comparison

Scheduling Strategy Experiments
Flexible vs Block Scheduling

‘ Strategy ‘ Waiting Time ‘ Completed Surgeries ‘
| Flexible (Base) | 89.19+0.79 | 8.81+0.07 |
| Block Scheduling | 97.97+05 | 7.47+0.092 |

Mixed vs Separate Scheduling

‘ Strategy ‘ Waiting Time ‘ Completed Surgeries ‘
| Mixed (Base) | 40.13£1.06 | 6.47-£0.04 |
| Separate Scheduling | 76.31£1.23 | 5.23+0.04 |

Management Insights:Higher flexibility leads to better performance - Maximize
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Main Findings & Conclusions

Theoretical Contributions
@ Modeling Innovation: First to apply ADP to real-time surgery management
® Algorithmic Innovation: Integrated approach of double-pass + state compression
+ basis function approximation
©® Complexity Breakthrough: Reduced exponential problem to polynomial solvability
Practical Value
@ Decision Support: Provides scientific real-time decision tools for hospital managers
® Strategy Guidance: Validates significant advantages of dynamic strategies
© Operational Optimization: Provides quantitative comparison basis for different
hospital operation modes
Algorithm Performance Summary
e Computational Efficiency: 2 hours to solve 10-room real-scale problems
e Approximation Accuracy: 95% action matching, 5% optimality gap
® Practicality: Can handle complex constraints of real hospitals
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Limitations & Future Research Directions

Current Limitations
@ Planning Scope: Currently limited to single-day planning
® Parameter Sensitivity: Requires accurate estimation of uncertainty parameters

©® Constraint Considerations: Insufficient consideration of medical staff and
equipment constraints

Future Research Directions

@ Multi-day Planning Extension:Consider cross-day impacts and resource
constraints. Build rolling horizon optimization framework

® Deep Learning Integration:Use neural networks to improve value function
approximation. Adaptive learning of uncertainty distributions

©® Robustness Enhancement:Distributionally robust optimization
methods.Performance guarantees under worst-case scenarios
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