
M
AN
U
AL
TÉ
CN
IC
O

D
EV
O
PS

Documentação Oficial - xxx

GIT E GITHUB
Guia de Referência e Comandos Essenciais

REPO

Arquitetura Distribuída de Versionamento

Destinatário: Equipe de Desenvolvimento
Atualização: 3 de dezembro de 2025
Status: Revisão 1.0

GIT ESSENCIAL

Sua Jornada no Controle de Versão Começa Aqui

Para mais recursos e suporte, visite:
github.com/manual-git-iniciante

Imagem gerada por IA: Gemini AI • 3 de dezembro de 2025

https://github.com/manual-git-iniciante

Sumário

1 Ciclo de Vida e Estados do Arquivo 8
1.1 A Filosofia dos Três Estados . 8
1.2 Visualização do Fluxo de Dados . 8
1.3 O Painel de Controle: git status . 9
1.4 Preparando o Terreno (Staging) . 10
1.5 Consolidando a História (Commit) . 10
1.6 Visualizando o Histórico (git log) . 10

2 Gerenciamento de Ramificações: Paralelismo e Isolamento 12
2.1 Conceito de Branches . 12

Primary

mdprimary0 mdprimary5 mdprimary10 mdprimary15

mdprimary20 mdprimary25 mdprimary30 mdprimary35

mdprimary40 mdprimary50 mdprimary60 mdprimary70

mdprimary80 mdprimary90 mdprimary95 mdprimary98

mdprimary99 mdprimary100

Secondary

mdsecondary0 mdsecondary5 mdsecondary10 mdsecondary15

mdsecondary20 mdsecondary25 mdsecondary30 mdsecondary35

mdsecondary40 mdsecondary50 mdsecondary60 mdsecondary70

mdsecondary80 mdsecondary90 mdsecondary95 mdsecondary98

mdsecondary99 mdsecondary100

Tertiary

mdtertiary0 mdtertiary5 mdtertiary10 mdtertiary15

mdtertiary20 mdtertiary25 mdtertiary30 mdtertiary35

mdtertiary40 mdtertiary50 mdtertiary60 mdtertiary70

mdtertiary80 mdtertiary90 mdtertiary95 mdtertiary98

mdtertiary99 mdtertiary100

3

Neutral

mdneutral0 mdneutral5 mdneutral10 mdneutral15

mdneutral20 mdneutral25 mdneutral30 mdneutral35

mdneutral40 mdneutral50 mdneutral60 mdneutral70

mdneutral80 mdneutral90 mdneutral95 mdneutral98

mdneutral99 mdneutral100

Neutral Variant

mdneutralvariant0 mdneutralvariant5 mdneutralvariant10 mdneutralvariant15

mdneutralvariant20 mdneutralvariant25 mdneutralvariant30 mdneutralvariant35

mdneutralvariant40 mdneutralvariant50 mdneutralvariant60 mdneutralvariant70

mdneutralvariant80 mdneutralvariant90 mdneutralvariant95 mdneutralvariant98

mdneutralvariant99 mdneutralvariant100

4

Light Scheme

lightprimary lightsurfacetint lightonprimary lightprimarycontainer

lightonprimarycontainer lightsecondary lightonsecondary lightsecondarycontainer

lightonsecondarycontainer lighttertiary lightontertiary lighttertiarycontainer

lightontertiarycontainer lighterror lightonerror lighterrorcontainer

lightonerrorcontainer lightbackground lightonbackground lightsurface

lightonsurface lightsurfacevariant lightonsurfacevariant lightoutline

lightoutlinevariant lightshadow lightscrim lightinversesurface

lightinverseonsurface lightinverseprimary

Dark Scheme

darkprimary darksurfacetint darkonprimary darkprimarycontainer

darkonprimarycontainer darksecondary darkonsecondary darksecondarycontainer

darkonsecondarycontainer darktertiary darkontertiary darktertiarycontainer

darkontertiarycontainer darkerror darkonerror darkerrorcontainer

darkonerrorcontainer darkbackground darkonbackground darksurface

darkonsurface darksurfacevariant darkonsurfacevariant darkoutline

darkoutlinevariant darkshadow darkscrim darkinversesurface

darkinverseonsurface darkinverseprimary

5

Git Colors

gitmain gitmaincontainer ongitmain ongitmaincontainer

gitdev gitdevcontainer ongitdev ongitdevcontainer

gitfeat gitfeatcontainer ongitfeat ongitfeatcontainer

githot githotcontainer ongithot ongithotcontainer

gitrelease gitreleasecontainer ongitrelease ongitreleasecontainer

Syntax Highlighting

codegreen codegray codepurple codestring

codefunction codevariable

Backgrounds

pagebg backcolour surfacelight surfacedark

Semantic Colors

success successlight successdark warning

warninglight warningdark error errorlight

errordark info infolight infodark

6

Aliases

primary onprimary primarycontainer onprimarycontainer

secondary onsecondary secondarycontainer onsecondarycontainer

tertiary ontertiary tertiarycontainer ontertiarycontainer

surface onsurface surfacevariant onsurfacevariant

background onbackground outline outlinevariant

7

Capítulo 1

Ciclo de Vida e Estados do Arquivo

1.1 A Filosofia dos Três Estados

Muitos iniciantes acreditam erroneamente que, ao salvar um arquivo no editor de texto (Ctrl+S), o Git já o
”salvou”. Isso não é verdade. O Git é passivo; ele não rastreia nada a menos que você ordene explicitamente.

Para dominar o Git, você deve entender que seu arquivo transita por três zonas distintas. Imagine uma
fotografia profissional:

1. Working Directory (A Cena): É o mundo real. Onde as coisas mudam caoticamente. O Git vê as
mudanças, mas as ignora.

2. Staging Area (O Visor da Câmera): É o enquadramento. Você escolhe, dentre a bagunça da cena, o
que quer que apareça na foto. É uma área de preparação.

3. Repository / .git (A Fotografia Revelada): É o registro histórico permanente e imutável.

1.2 Visualização do Fluxo de Dados

Observe o diagrama abaixo. Seu objetivo diário é mover seu código da esquerda (Inseguro/Volátil) para a direita
(Seguro/Histórico).

Atenção
Meu novo aviso

Nota Importante

Minha nota informativa

8

Selecionando arquivos cirurgicamente

1 # Opcao 1: Adiciona APENAS o arquivo de estilos (Recomendado)
2 git add css/style.css
3

4 # Opcao 2: Adiciona TUDO que foi modificado (Use com cautela)
5 git add .
6

Código 1.1: Selecionando arquivos cirurgicamente

Working Directory
(Edição / Volátil)

Seus Arquivos
Untracked / Modified

Staging Area
(Preparação / Index)

Arquivos Prontos
Staged

Repository (.git)
(Histórico Seguro)

Snapshots
Committed

git add git commit

O Git só salva o que está no quadrado amarelo!

Figura 1.1: O fluxo mandatório: Nada vai para o Repositório sem passar pelo Staging.

1.3 O Painel de Controle: git status
Se você estivesse pilotando um avião, o git status seria seu altímetro. Você deve executar este comando
constantemente. Ele lhe diz exatamente onde seus arquivos estão no diagrama acima.

Dica
Sempre configure seu nome e email antes de fazer o primeiro commit. Isso garante que suas contri-
buições sejam corretamente atribuídas no histórico do projeto.

Nunca execute um comando destrutivo sem antes checar o status.

Dica Pro
Use git config --global para configurações que valem para todos os repositórios, e git
config --local para configurações específicas de um projeto.

1 # O comando mais importante do dia a dia
2 git status

Código 1.2: Consultando o estado do projeto

O retorno do terminal lhe dirá:

• Untracked files: Arquivos novos que o Git nunca viu.

• Changes not staged for commit: Arquivos modificados, mas que não entrarão no próximo pacote.

• Changes to be committed: Arquivos na Staging Area, prontos para a ”foto”.

9

1.4 Preparando o Terreno (Staging)

A Staging Area permite que você faça commits atômicos. Em vez de salvar todo o seu trabalho de 5 horas em
um único pacote confuso, você pode dividir em partes lógicas.

1 # Opcao 1: Adiciona APENAS o arquivo de estilos (Recomendado)
2 git add css/style.css
3

4 # Opcao 2: Adiciona TUDO que foi modificado (Use com cautela)
5 git add .

Código 1.3: Selecionando arquivos cirurgicamente

1.5 Consolidando a História (Commit)

O commit não é um ”Save”, é um ponto na história. Se o projeto quebrar amanhã, é para este ponto que você
voltará. Portanto, a mensagem do commit deve ser tratada como documentação técnica.

Regra de Ouro: A mensagem deve completar a frase: ”Se eu aplicar este commit, ele irá...”

• Ruim: ”ajustes”, ”fix”, ”mudando coisas”.

• Bom: ”adiciona validação de CPF no formulário”, ”corrige erro de cor no header”.

1 # O flag -m define a mensagem
2 git commit -m "feat: implementa layout responsivo na home"

Código 1.4: O registro definitivo

1.6 Visualizando o Histórico (git log)
Para ver a lista de fotos (snapshots) que você tirou até agora:

1 # Mostra autor , data e mensagem de cada commit
2 git log
3

4 # Versao resumida (uma linha por commit)
5 git log --oneline

Código 1.5: Auditoria do projeto

Desafio Avançado

Implemente um Git Hook que impeça commits na branch main e force o desenvolvedor a criar uma Pull
Request. O hook deve:

• Detectar se o commit está sendo feito na main

• Exibir uma mensagem de erro explicativa

• Sugerir o fluxo correto (criar feature branch)

Arquivo: .git/hooks/pre-commit

10

Exercícios
Exercício 1.6.1: Configure seu nome de usuário no Git usando o comando apropriado.

Exercício 1.6.2: Crie um novo repositório local e adicione um arquivo README.md com uma breve
descrição do projeto.

Exercício 1.6.3: Faça um commit com a mensagem ”feat: adiciona README inicial”.

Exercício 1.6.4: Verifique o histórico de commits usando git log.

11

Capítulo 2
Gerenciamento de Ramificações: Paralelismo e Isola-
mento

2.1 Conceito de Branches

As main , develop , feature/* e hotfix/* branches são fundamentais no Git.

A B C

D E

main

feature-X

HEAD

Figura 2.1: Exemplo usando a nova paleta Material Design 3

Desafio
Cenário: Você está trabalhando em uma branch feature/login e descobriu que a branch main
recebeu atualizações críticas.
Seu desafio:

1. Faça o rebase da sua branch feature/login com a main

2. Resolva os conflitos que aparecerem

3. Garanta que todos os testes passem após o rebase

4. Faça o push forçado (force push) da branch rebased

Dica: Use git rebase -i main para ter controle interativo do processo.

12

� Lembre-se: sempre crie branches a partir da develop!

� Atenção: Nunca faça commit direto na main!

� Merge realizado com sucesso!

� Conflito detectado! Resolução manual necessária.

Exercícios
Exercício 2.1.1: Crie uma nova branch chamada feature/menu.

Exercício 2.1.2: Adicione um arquivo menu.html e faça o commit.

13

	Ciclo de Vida e Estados do Arquivo
	A Filosofia dos Três Estados
	Visualização do Fluxo de Dados
	O Painel de Controle: git status
	Preparando o Terreno (Staging)
	Consolidando a História (Commit)
	Visualizando o Histórico (git log)

	Gerenciamento de Ramificações: Paralelismo e Isolamento
	Conceito de Branches

