7¢)
=¥
S
=
a

4

MANUAL TECNICO

DOCUMENTACAO OFICIAL - XXX

GIT E GITHUB

Guia de Referéncia e Comandos Essenciais

Arquitetura Distribuida de Versionamento

@)

Destinatario: Equipe de Desenvolvimento
Atualizacao: 3 de dezembro de 2025
Status: Revisao 1.0

GIT ESSENCIAL

Sua Jornada no Controle de Versdo Comega Aqui

0 que sera Vai ver que
que deu errado o estagiario

entendeu
errado!

Para mais recursos e suporte, visite:
github.com/manual-git-iniciante

Imagem gerada por IA: Gemini Al ® 3 de dezembro de 2025

https://github.com/manual-git-iniciante

2

Sumario

Ciclo de Vida e Estados do Arquivo
1.1 AFilosofiados Trés Estados o
1.2 Visualizacdo do Fluxode Dados
13 OPainelde Controle: git status
1.4 Preparando o Terreno (Staging)
1.5 Consolidando a Histéria (Commit)

1.6 Visualizando o Historico (git log)

Gerenciamento de Ramificacoes: Paralelismo e Isolamento
2.1 Conceito de Branches

S \O o o WP

—_

10

12
12

Primary

mdprimary80

mdprimary90

mdprimary95

mdprimary70

mdprimary98

mdprimary99

mdprimary100

Secondary

mdsecondary80

mdsecondary90

mdsecondary95

mdsecondary70

mdsecondary98

mdsecondary99

mdsecondary100

Tertiary

mdtertiary80

mdtertiary90

mdtertiary95

mdtertiary70

mdtertiary98

mdtertiary99

mdtertiary100

Neutral

mdneutral80

mdneutral90

mdneutral95

mdneutral70

mdneutral98

mdneutral99

mdneutrall00

Neutral Variant

mdneutralvariant80

mdneutralvariant90

mdneutralvariant95

mdneutralvariant70

mdneutralvariant98

mdneutralvariant99

mdneutralvariant100

Light Scheme

lightoutlinevariant

lightinverseonsurface

lightbackground

lightsurfacevariant

lightinverseprimary

Dark Scheme

darkonerrorcontainer

darkonsurface

darkprimary darksurfacetint
darkonprimarycontainer darksecondary
darkonsecondarycontainer darktertiary
darkontertiarycontainer darkerror

darkonbackground

darkonsurfacevariant

lightonprimary lightprimarycontainer

lightonsecondary lightsecondarycontainer

lightontertiary lighttertiarycontainer
lightonerror lighterrorcontainer

lightsurface

darkinversesurface

Git Colors

gitmaincontainer ongitmain
gitdevcontainer ongitdev
gitfeatcontainer ongitfeat
githotcontainer ongithot
gitreleasecontainer ongitrelease

Syntax Highlighting

Backgrounds

pagebg backcolour surfacelight surfacedark

Semantic Colors

successlight
warninglight errorlight
infolight

Aliases

surface

background

onprimary primarycontainer

onsecondary secondarycontainer

ontertiary tertiarycontainer
surfacevariant

outlinevariant

Capitulo 1

Ciclo de Vida e Estados do Arquivo

1.1 A Filosofia dos Trés Estados

Muitos iniciantes acreditam erroneamente que, ao salvar um arquivo no editor de texto (Ctrl+S), o Git jd o
“salvou”. Isso nao € verdade. O Git ¢ passivo; ele ndo rastreia nada a menos que voce ordene explicitamente.

Para dominar o Git, vocé deve entender que seu arquivo transita por trés zonas distintas. Imagine uma
fotografia profissional:

1. Working Directory (A Cena): E o mundo real. Onde as coisas mudam caoticamente. O Git vé as
mudancas, mas as ignora.

2. Staging Area (O Visor da Camera): E o enquadramento. Vocé escolhe, dentre a bagunca da cena, o
que quer que apareca na foto. E uma 4rea de preparacio.

3. Repository / .git (A Fotografia Revelada): E o registro historico permanente e imutdvel.

1.2 Visualizacao do Fluxo de Dados

Observe o diagrama abaixo. Seu objetivo didrio € mover seu codigo da esquerda (Inseguro/Voldtil) para a direita
(Seguro/Historico).

[Meu novo aviso

O Nota Importante

Minha nota informativa

</> Selecionando arquivos cirurgicamente

Opcao 1: Adiciona APENAS o arquivo de estilos (Recomendado)
git add css/style.css

Opcao 2: Adiciona TUDO que foi modificado (Use com cautela)

git add
Codigo 1.1: Selecionando arquivos cirurgicamente
Working Directory Staging Area Repository (.git)
(Edicao / Voltil) git add (Preparagdo / Index) git commit (Histdrico Seguro)
e —_—
Seus Arquivos Arquivos Prontos Snapshots
Untracked | Modified Staged Committed

O Git s6 salva o que estd no quadrado amarelo!

Figura 1.1: O fluxo mandatorio: Nada vai para o Repositdrio sem passar pelo Staging.

1.3 O Painel de Controle: git status

Se voce estivesse pilotando um avido, 0 git status seria seu altimetro. Vocé deve executar este comando
constantemente. Ele lhe diz exatamente onde seus arquivos estdo no diagrama acima.

@ Dica

Sempre configure seu nome e email antes de fazer o primeiro commit. Isso garante que suas contri-
buigoes sejam corretamente atribuidas no bistorico do projeto.

Nunca execute um comando destrutivo sem antes checar o status.

@ Dica Pro

Use git config —-global para configuracoes que valem para todos os repositorios, e git
config —-local para configuracoes especificas de um projeto.

0 comando mais importante do dia a dia
2| git status

Caodigo 1.2: Consultando o estado do projeto
O retorno do terminal lhe dird:
* Untracked files: Arquivos novos que o Git nunca viu.
* (Changes not staged for commit: Arquivos modificados, mas que nao entrardo no proximo pacote.

* Changes to be committed: Arquivos na Staging Area, prontos para a "foto”.

1.4 Preparando o Terreno (Staging)

A Staging Area permite que voce faca commits atomicos. Em vez de salvar todo o seu trabalho de 5 horas em
um Unico pacote confuso, vocé pode dividir em partes logicas.

Opcao 1: Adiciona APENAS o arquivo de estilos (Recomendado)

:lgit add css/style.css

Opcao 2: Adiciona TUDO que foi modificado (Use com cautela)

5lgit add

Codigo 1.3: Selecionando arquivos cirurgicamente

1.5 Consolidando a Historia (Commit)

O commit ndo € um "Save”, € um ponto na historia. Se o projeto quebrar amanh, € para este ponto que vocé
voltard. Portanto, a mensagem do commit deve ser tratada como documentagio técnica.
Regra de Ouro: A mensagem deve completar a frase: "Se eu aplicar este commit, ele ird...”

* Ruim: "ajustes”, "fix”, "mudando coisas”.

” »

* Bom: "adiciona validacio de CPF no formuldrio”, "corrige erro de cor no header”.

0 flag —-m define a mensagem

:)git commit -m "feat: implementa layout responsivo na home"

Codigo 1.4: O registro definitivo

1.6 Visualizando o Histérico (git log)

Para ver a lista de fotos (snapshots) que vocé tirou até agora:

Mostra autor, data e mensagem de cada commit

2l git log

Versao resumida (uma linha por commit)

5/git log --oneline

Codigo 1.5: Auditoria do projeto

& Desafio Avancado

Implemente um Git Hook que impega commits na branch main e force o desenvolvedor a criar uma Pull
Request. O hook deve:

* Detectar se 0 commit estd sendo feito na main
* Exibir uma mensagem de erro explicativa
* Sugerir o fluxo correto (criar feature branch)

Arquivo: . git/hooks/pre-commit

10

\J ’s .
[# Exercicios

Exercicio 1.6.1: Configure seu nome de usudrio no Git usando o comando apropriado.

Exercicio 1.6.2: Crie um novo repositorio local e adicione um arquivo README.md com uma breve
descri¢do do projeto.

Exercicio 1.6.3: Faca um commit com a mensagem “feat: adiciona README inicial”.

Exercicio 1.6.4: Verifique o histérico de commits usando git log.

11

Capitulo 2

Gerenciamento de Ramificacoes: Paralelismo e Isola-
mento

2.1 Conceito de Branches

I nain § develop ! e RS Z#R9EY branches sio fundamentais no Git.

HEAD
‘—>$ feature-X

Figura 2.1: Exemplo usando a nova paleta Material Design 3

AB Desafio

Cenario: Vocé estd trabalhando em uma branch feature/login e descobriu que a branch main
recebeu atualizacoes criticas.
Seu desafio:

1. Faga o rebase da sua branch feature/login com amain
2. Resolva os conflitos que aparecerem

3. Garanta que todos os testes passem apds o rebase

4. Faca o push forcado (force push) da branch rebased

Dica: Use git rebase -i main para ter controle interativo do processo.

12

Lembre-se: sempre crie branches a partir da develop!
Atengao: Nunca faga commit direto na main!
Merge realizado com sucesso!

Conflito detectado! Resolu¢io manual necessaria.

[# Exercicios

Exercicio 2.1.1: Crie uma nova branch chamada feature/menu.

Exercicio 2.1.2: Adicione um arquivo menu . html e faca o commit.

13

	Ciclo de Vida e Estados do Arquivo
	A Filosofia dos Três Estados
	Visualização do Fluxo de Dados
	O Painel de Controle: git status
	Preparando o Terreno (Staging)
	Consolidando a História (Commit)
	Visualizando o Histórico (git log)

	Gerenciamento de Ramificações: Paralelismo e Isolamento
	Conceito de Branches

