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Capitulo 1

Ciclo de Vida e Estados do Arquivo

1.1 A Filosofia dos Trés Estados

Muitos iniciantes acreditam erroneamente que, ao salvar um arquivo no editor de texto (Ctrl+S), o Git jd o
“salvou”. Isso nao € verdade. O Git ¢ passivo; ele ndo rastreia nada a menos que voce ordene explicitamente.

Para dominar o Git, vocé deve entender que seu arquivo transita por trés zonas distintas. Imagine uma
fotografia profissional:

1. Working Directory (A Cena): E o mundo real. Onde as coisas mudam caoticamente. O Git vé as
mudancas, mas as ignora.

2. Staging Area (O Visor da Camera): E o enquadramento. Vocé escolhe, dentre a bagunca da cena, o
que quer que apareca na foto. E uma 4rea de preparacio.

3. Repository / .git (A Fotografia Revelada): E o registro historico permanente e imutdvel.

1.2 Visualizacao do Fluxo de Dados

Observe o diagrama abaixo. Seu objetivo didrio € mover seu codigo da esquerda (Inseguro/Voldtil) para a direita
(Seguro/Historico).

[ Meu novo aviso

O Nota Importante

Minha nota informativa



</> Selecionando arquivos cirurgicamente

# Opcao 1: Adiciona APENAS o arquivo de estilos (Recomendado)
git add css/style.css

# Opcao 2: Adiciona TUDO que foi modificado (Use com cautela)

git add
Codigo 1.1: Selecionando arquivos cirurgicamente
Working Directory Staging Area Repository (.git)
(Edicao / Voltil) git add (Preparagdo / Index)  git commit  (Histdrico Seguro)
e —_—
Seus Arquivos Arquivos Prontos Snapshots
Untracked | Modified Staged Committed

O Git s6 salva o que estd no quadrado amarelo!

Figura 1.1: O fluxo mandatorio: Nada vai para o Repositdrio sem passar pelo Staging.

1.3 O Painel de Controle: git status

Se voce estivesse pilotando um avido, 0 git status seria seu altimetro. Vocé deve executar este comando
constantemente. Ele lhe diz exatamente onde seus arquivos estdo no diagrama acima.

@ Dica

Sempre configure seu nome e email antes de fazer o primeiro commit. Isso garante que suas contri-
buigoes sejam corretamente atribuidas no bistorico do projeto.

Nunca execute um comando destrutivo sem antes checar o status.

@ Dica Pro

Use git config —-global para configuracoes que valem para todos os repositorios, e git
config —-local para configuracoes especificas de um projeto.

# 0 comando mais importante do dia a dia
2| git status

Caodigo 1.2: Consultando o estado do projeto
O retorno do terminal lhe dird:
* Untracked files: Arquivos novos que o Git nunca viu.
* (Changes not staged for commit: Arquivos modificados, mas que nao entrardo no proximo pacote.

* Changes to be committed: Arquivos na Staging Area, prontos para a "foto”.




1.4 Preparando o Terreno (Staging)

A Staging Area permite que voce faca commits atomicos. Em vez de salvar todo o seu trabalho de 5 horas em
um Unico pacote confuso, vocé pode dividir em partes logicas.

# Opcao 1: Adiciona APENAS o arquivo de estilos (Recomendado)

:lgit add css/style.css

# Opcao 2: Adiciona TUDO que foi modificado (Use com cautela)

5lgit add

Codigo 1.3: Selecionando arquivos cirurgicamente

1.5 Consolidando a Historia (Commit)

O commit ndo € um "Save”, € um ponto na historia. Se o projeto quebrar amanh, € para este ponto que vocé
voltard. Portanto, a mensagem do commit deve ser tratada como documentagio técnica.
Regra de Ouro: A mensagem deve completar a frase: "Se eu aplicar este commit, ele ird...”

* Ruim: "ajustes”, "fix”, "mudando coisas”.

” »

* Bom: "adiciona validacio de CPF no formuldrio”, "corrige erro de cor no header”.

# 0 flag —-m define a mensagem

:)git commit -m "feat: implementa layout responsivo na home"

Codigo 1.4: O registro definitivo

1.6 Visualizando o Histérico (git log)

Para ver a lista de fotos (snapshots) que vocé tirou até agora:

# Mostra autor, data e mensagem de cada commit

2l git log

# Versao resumida (uma linha por commit)

5/git log --oneline

Codigo 1.5: Auditoria do projeto

& Desafio Avancado

Implemente um Git Hook que impega commits na branch main e force o desenvolvedor a criar uma Pull
Request. O hook deve:

* Detectar se 0 commit estd sendo feito na main
* Exibir uma mensagem de erro explicativa
* Sugerir o fluxo correto (criar feature branch)

Arquivo: . git/hooks/pre-commit
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\J ’s .
[# Exercicios

Exercicio 1.6.1:  Configure seu nome de usudrio no Git usando o comando apropriado.

Exercicio 1.6.2:  Crie um novo repositorio local e adicione um arquivo README.md com uma breve
descri¢do do projeto.

Exercicio 1.6.3: Faca um commit com a mensagem “feat: adiciona README inicial”.

Exercicio 1.6.4: Verifique o histérico de commits usando git log.
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Capitulo 2

Gerenciamento de Ramificacoes: Paralelismo e Isola-
mento

2.1 Conceito de Branches

I nain § develop ! e RS Z#R9EY branches sio fundamentais no Git.

HEAD
‘—>$ feature-X

Figura 2.1: Exemplo usando a nova paleta Material Design 3

AB Desafio

Cenario: Vocé estd trabalhando em uma branch feature/login e descobriu que a branch main
recebeu atualizacoes criticas.
Seu desafio:

1. Faga o rebase da sua branch feature/login com amain
2. Resolva os conflitos que aparecerem

3. Garanta que todos os testes passem apds o rebase

4. Faca o push forcado (force push) da branch rebased

Dica: Use git rebase -i main para ter controle interativo do processo.
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Lembre-se: sempre crie branches a partir da develop!
Atengao: Nunca faga commit direto na main!
Merge realizado com sucesso!

Conflito detectado! Resolu¢io manual necessaria.

[# Exercicios

Exercicio 2.1.1:  Crie uma nova branch chamada feature/menu.

Exercicio 2.1.2:  Adicione um arquivo menu . html e faca o commit.
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