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Capítulo 1

Ciclo de Vida e Estados do Arquivo

1.1 A Filosofia dos Três Estados

Muitos iniciantes acreditam erroneamente que, ao salvar um arquivo no editor de texto (Ctrl+S), o Git já o
”salvou”. Isso não é verdade. O Git é passivo; ele não rastreia nada a menos que você ordene explicitamente.

Para dominar o Git, você deve entender que seu arquivo transita por três zonas distintas. Imagine uma
fotografia profissional:

1. Working Directory (A Cena): É o mundo real. Onde as coisas mudam caoticamente. O Git vê as
mudanças, mas as ignora.

2. Staging Area (O Visor da Câmera): É o enquadramento. Você escolhe, dentre a bagunça da cena, o
que quer que apareça na foto. É uma área de preparação.

3. Repository / .git (A Fotografia Revelada): É o registro histórico permanente e imutável.

1.2 Visualização do Fluxo de Dados

Observe o diagrama abaixo. Seu objetivo diário é mover seu código da esquerda (Inseguro/Volátil) para a direita
(Seguro/Histórico).

Atenção
Meu novo aviso

Nota Importante

Minha nota informativa
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Selecionando arquivos cirurgicamente

1 # Opcao 1: Adiciona APENAS o arquivo de estilos (Recomendado)
2 git add css/style.css
3

4 # Opcao 2: Adiciona TUDO que foi modificado (Use com cautela)
5 git add .
6

Código 1.1: Selecionando arquivos cirurgicamente

Working Directory
(Edição / Volátil)

Seus Arquivos
Untracked / Modified

Staging Area
(Preparação / Index)

Arquivos Prontos
Staged

Repository (.git)
(Histórico Seguro)

Snapshots
Committed

git add git commit

O Git só salva o que está no quadrado amarelo!

Figura 1.1: O fluxo mandatório: Nada vai para o Repositório sem passar pelo Staging.

1.3 O Painel de Controle: git status
Se você estivesse pilotando um avião, o git status seria seu altímetro. Você deve executar este comando
constantemente. Ele lhe diz exatamente onde seus arquivos estão no diagrama acima.

Dica
Sempre configure seu nome e email antes de fazer o primeiro commit. Isso garante que suas contri-
buições sejam corretamente atribuídas no histórico do projeto.

Nunca execute um comando destrutivo sem antes checar o status.

Dica Pro
Use git config --global para configurações que valem para todos os repositórios, e git
config --local para configurações específicas de um projeto.

1 # O comando mais importante do dia a dia
2 git status

Código 1.2: Consultando o estado do projeto

O retorno do terminal lhe dirá:

• Untracked files: Arquivos novos que o Git nunca viu.

• Changes not staged for commit: Arquivos modificados, mas que não entrarão no próximo pacote.

• Changes to be committed: Arquivos na Staging Area, prontos para a ”foto”.

9



1.4 Preparando o Terreno (Staging)

A Staging Area permite que você faça commits atômicos. Em vez de salvar todo o seu trabalho de 5 horas em
um único pacote confuso, você pode dividir em partes lógicas.

1 # Opcao 1: Adiciona APENAS o arquivo de estilos (Recomendado)
2 git add css/style.css
3

4 # Opcao 2: Adiciona TUDO que foi modificado (Use com cautela)
5 git add .

Código 1.3: Selecionando arquivos cirurgicamente

1.5 Consolidando a História (Commit)

O commit não é um ”Save”, é um ponto na história. Se o projeto quebrar amanhã, é para este ponto que você
voltará. Portanto, a mensagem do commit deve ser tratada como documentação técnica.

Regra de Ouro: A mensagem deve completar a frase: ”Se eu aplicar este commit, ele irá...”

• Ruim: ”ajustes”, ”fix”, ”mudando coisas”.

• Bom: ”adiciona validação de CPF no formulário”, ”corrige erro de cor no header”.

1 # O flag -m define a mensagem
2 git commit -m "feat: implementa layout responsivo na home"

Código 1.4: O registro definitivo

1.6 Visualizando o Histórico (git log)
Para ver a lista de fotos (snapshots) que você tirou até agora:

1 # Mostra autor , data e mensagem de cada commit
2 git log
3

4 # Versao resumida (uma linha por commit)
5 git log --oneline

Código 1.5: Auditoria do projeto

Desafio Avançado

Implemente um Git Hook que impeça commits na branch main e force o desenvolvedor a criar uma Pull
Request. O hook deve:

• Detectar se o commit está sendo feito na main

• Exibir uma mensagem de erro explicativa

• Sugerir o fluxo correto (criar feature branch)

Arquivo: .git/hooks/pre-commit
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Exercícios
Exercício 1.6.1: Configure seu nome de usuário no Git usando o comando apropriado.

Exercício 1.6.2: Crie um novo repositório local e adicione um arquivo README.md com uma breve
descrição do projeto.

Exercício 1.6.3: Faça um commit com a mensagem ”feat: adiciona README inicial”.

Exercício 1.6.4: Verifique o histórico de commits usando git log.
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Capítulo 2
Gerenciamento de Ramificações: Paralelismo e Isola-
mento

2.1 Conceito de Branches

As main , develop , feature/* e hotfix/* branches são fundamentais no Git.

A B C

D E

main

feature-X

HEAD

Figura 2.1: Exemplo usando a nova paleta Material Design 3

Desafio
Cenário: Você está trabalhando em uma branch feature/login e descobriu que a branch main
recebeu atualizações críticas.
Seu desafio:

1. Faça o rebase da sua branch feature/login com a main

2. Resolva os conflitos que aparecerem

3. Garanta que todos os testes passem após o rebase

4. Faça o push forçado (force push) da branch rebased

Dica: Use git rebase -i main para ter controle interativo do processo.
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� Lembre-se: sempre crie branches a partir da develop!

� Atenção: Nunca faça commit direto na main!

� Merge realizado com sucesso!

� Conflito detectado! Resolução manual necessária.

Exercícios
Exercício 2.1.1: Crie uma nova branch chamada feature/menu.

Exercício 2.1.2: Adicione um arquivo menu.html e faça o commit.
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