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Abstract

The randomness and volatility of wind power time series, which are an external

reflection of their internal chaotic dynamics, have always been important fac-

tors affecting the accuracy of wind power prediction. The chaotic characteristics

of wind power data have not been studied deeply enough in existing research.

Therefore, in this paper, a short-term wind power forecast method based on

chaotic analysis is proposed, including chaotic time series estimation and mul-

tivariate phase space reconstruction (PSR). First, we calculate the largest Lya-

punov exponent of wind power time series to measure the degree of chaos in wind

power data. Then, the chaotic characteristics of several wind power time series

from some neighboring wind farms are analyzed, based on which two multi-

variate multi-dimensional PSR models are established. Afterwards, the nearest

neighbors (NNs) of the data to be predicted are selected in the phase space and

delivered to the least-square support vector machine (LSSVM) model to exper-

iment the forecasting. Wind power data collected from several adjacent wind

sites are used to conduct the simulation studies, and the results have shown the

effectiveness of the proposed method and its advantage over the classic LSSVM

model in terms of accuracy and stability.
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1. Introduction

Global energy shortages and environmental problems are becoming more

and more serious, hence, the development and application of renewable energy

grows increasingly important. Wind energy is currently one of the most widely

used renewable energy resources, and its proportion in energy system continues5

to increase. By far, the total worldwide wind capacity has reached 744 GW,

which accounts for 7% of the world electricity demand [1]. Among it, the grid-

connected capacity of wind power is also increasing. Under such circumstances,

to ensure the stable operation of the power system and reduce wind curtailment,

the effective utilization of wind power is of utmost importance. However, due to10

its strong randomness and volatility, it is always difficult to predict wind power

generation. Therefore, researchers need to combine a variety of related factors

and historical data to achieve effective wind power forecasting.

In recent years, a large number of wind power forecasting methods have been

proposed. They can be grouped into three categories, including physical models15

[2, 3], statistical models [4, 5], and artificial intelligence (AI) models [6–9]. The

AI models are now widely used and proved to be effective. They are trained

using historical data to learn the relationship between the input and output

data. Support vector regression (SVR) [10, 11], support vector machine (SVM),

and its least-square version, least-square support vector machine (LSSVM) [12,20

13] are typical AI models. LSSVM simplifies the formulation of the standard

SVM, achieving better generalization performance and low computational cost

[14]. In our research, we select LSSVM as the forecasting model.

Although prediction models can learn the relationship between input and

output data, it is unlikely for the prediction models to fully capture the inher-25

ent characteristics and evolution dynamics of the wind power data as they are

more complex. Therefore, many data analysis methods are applied to prepro-
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cess the data before forecasting, such as data decomposition algorithms [15–19],

feature extraction algorithms [20–22], etc. These methods focus on decreasing

the influence of the non-stationarity and strong volatility of wind power data30

on their prediction, but cannot provide an in-depth analysis of the intrinsic dy-

namics of the data. According to some research, the inherent evolution of wind

power data has the characteristics of chaotic dynamics [23–25]. The changing

trend of wind power time series seems to be irregular, but it is a reflection of

their chaotic dynamics. Papers [26] and [27] reconstruct wind power/speed time35

series into higher-dimensional phase space to observe and study their chaotic

characteristics. The PSR method needs two parameters: embedding dimen-

sion and time delay. To estimate the embedding dimension, [28] develops the

method of false nearest neighbors (FNN), but its criterion to determine a false

neighbor is somewhat subjective; Cao et al. [29] improves the FNN method by40

proposing an indicator to help distinguish between deterministic and stochastic

time series. To estimate the time delay, [30] proposes the mutual information

method (MI). In this paper, the Cao method and the MI method are used to

calculate the two parameters respectively.

Apart from PSR, the estimation of chaotic extent is also important to analyze45

the chaotic characteristics of a wind power time series. The largest Lyapunov

exponent (LLE) is usually used to determine whether a time series is chaotic

[23, 25, 26]. However, since the LLE is closely related to the degree of divergence

of adjacent orbits in the attractor (i.e., the reconstructed time series), it is also a

quantitative measurement of the chaotic extent of a time series [31–33]. Wolf et50

al. develops an algorithm to calculate the LLE of one-dimensional experimental

time series [32]. The Wolf algorithm is improved in this paper by adjusting some

parameters, and applied to analyze wind power data. In general, time series

with positive LLE indicates that it is chaotic. However, the improved Wolf

algorithm may cause the estimation of LLE of random signals to be positive.55

Thus, the improved Wolf algorithm is combined with the Cao method to analyze

the chaotic characteristics of a time series, where the latter judges the chaos

qualitatively and the former estimates the chaotic extent quantitatively.
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Time series with a similar degree of LLE will be analyzed together as rel-

evant variables to assist the prediction. This is an important application of60

chaotic analysis in our research. In this paper, the chaotic characteristics of

wind power data of adjacent wind farms are estimated and among them, the

data with close chaos extent (i.e., similar LLE) will be analyzed in the same

phase space. Then a multivariate PSR method is proposed, including two mod-

els, the high-dimensional PSR (HDPSR) model and the low-dimensional PSR65

(LDPSR) model. Their application scenarios vary depending on the LLEs and

the embedding dimensions of wind power time series. Moreover, a calcula-

tion process to verify the chaotic characteristics of the reconstructed space is

described in this paper. In addition, to improve the prediction accuracy and

stability, the methods for selecting the nearest neighbors (NNs) in the phase70

space and the training points for forecasting models are optimized.

The main contributions of this paper are summarized as follows:

1. Detailed analysis and instructions of the calculation principle of LLE are

given, explaining why and how it can be used to measure the degree of

chaos. Adjustments have been made to the selection of some parameters of75

the calculation algorithm of LLE, which is applied to estimate the chaotic

extent of wind power time series.

2. Two multivariate PSR models are proposed for wind power time series

based on the LLE and PSR parameters, which are used to assist the

prediction of data collected from adjacent wind farms.80

3. The influence of the numbers of NNs and training points on prediction

results are analyzed, and an optimal selection method for the two param-

eters is developed.

2. Chaotic characteristic analysis

Chaotic characteristics analysis consists of two parts: phase space recon-85

struction (PSR) and chaotic extent estimation. For PSR, the Cao method and

the mutual information (MI) method are selected to calculate the embedding
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dimension and time delay, respectively; for chaotic extent estimation, the Cao

method and the improved Wolf algorithm are combined to estimate whether a

time series is chaotic and calculate the LLE.90

2.1. Determining the embedding dimension

The estimation of the embedding dimension, m, is based on the distance

change rate of NNs. According to the Cao method, as m increases, the sep-

aration between NNs will converge gradually, and the dimension at that time

should be the embedding dimension [29]. The calculation procedure is described95

as follows.

First, a given time series {x1, x2, · · ·xN} is reconstructed into a phase space

and the ith reconstructed point is described as:

Xi(m) = (xi, xi+τ , · · · , xi+(m−1)τ ), i = 1, 2, · · ·N − (m− 1)τ, (1)

where τ is the time delay and N is the total number of the samples of the

original time series. In the m-dimensional phase space, the NNs of Xi(m),

which is denoted as Xn(i,m)(m), are searched. Then define

r(i,m) =

∥∥Xi(m+ 1)−Xn(i,m)(m+ 1)
∥∥∥∥Xi(m)−Xn(i,m)(m)

∥∥ , i = 1, 2, · · · , N −mτ, (2)

where ∥ · ∥ denotes the measurement of Euclidean distance, Xi(m + 1) =

(xi, xi+τ , · · · , xi+mτ ) is the ith reconstructed vector with dimension m + 1,

Xn(i,m)(m+ 1) is Xn(i,m)(m) with dimension m+ 1.

The mean value of r(i,m) is selected to estimate the divergence of NN:

E(m) =
1

N −mτ

N−mτ∑
i=1

r(i,m) (3)

and to investigate its variation from m to m+1, the following variable is defined:

E1(m) =
E(m+ 1)

E(m)
(4)

When E1(m) converges at a certain m0, m0 is the minimum embedding dimen-100

sion determined.
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2.2. Estimating a deterministic time series

Aside from choosing the embedding dimension, the Cao method also defines

another quantity, E2(m), to distinguish deterministic signals from stochastic

signals, i.e., to help investigate whether a time series is chaotic. Define

E∗(m) =
1

N −mτ

N−mτ∑
i=1

∣∣xi+mτ − xn(i,m)+mτ

∣∣ (5)

and its variation from m to m+ 1

E2(m) =
E∗(m+ 1)

E∗(m)
(6)

where E∗ is the mean separation of the NNs in the m-dimensional space. As

Figure 1 shows, for stochastic time series, its data features are not related to

the dimension m; hence, E2 will be equal to one for any m. Contrarily, for105

deterministic time series, E2 is certainly related to m; thus, there must exist

some cases that E2(m) ̸= 1. Moreover, as m increases, it may converge to some

extent [29].

As noted, the LLE can to some extent help estimate a chaotic time series.

However, based on practical experiments, it is found that the estimation of110

the LLE of some stochastic time series also tends to be positive, which is not

consistent with the feature of the time series (stochastic). Therefore, this paper

proposes to use the Cao method to distinguish a chaotic time series and to

calculate the LLE to estimate the chaotic extent.

2.3. Determining the time delay115

The mutual information method (MI) takes the time delay when the mutual

information function first reaches a local minimum as the optimal embedding

time delay for PSR [30]. For time series x(t) = {x1, x2, . . . , xm, . . .}, denote

it as system S, i.e., S = {s1, s2, . . . , sn}. When time delay is τ , denote the

delayed time series x(t + τ) = {x1+τ , x2+τ , . . . , xm+τ , . . .} as system Q, i.e.,

Q = {q1, q2, . . . , qn}. Then the mutual information is defined as

I(Q,S) = H(Q) +H(S)−H(S,Q) (7)
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Figure 1: Plots of E1(m) and E2(m) of a deterministic and a stochastic time series.

where H(Q) and H(S) are the entropy of Q and S, respectively, and H(S,Q)

is the joint entropy of S and Q, which are defined as

H(S) = −
∑

Ps (si) log2 Ps (si) (8)

H(Q) = −
∑
j

Pq (qj) log2 Pq (qj) (9)

H(S,Q) = −
∑
i,j

Psq (si, qj) log2
Psq (si, qj)

Ps (si)
(10)

where Ps (si) is the probability that a measurement of s will yield si, Pq (qj)

is the probability a measurement of q will yield qj , and Psq (si, qj) is the joint

distribution probability of si and qj in s and q. Thus, the calculation of mutual

information I(Q,S) is given as

I(Q,S) =
∑
i

∑
j

Psq (si, qj) log2

[
Psq (si, qj)

Ps (si)Pq (qi)

]
(11)

When calculating the time delay, I(Q,S) is a function of τ , denoted as I(τ).

When I(τ) first reaches a local minimum, the value of τ at that time is deter-

mined as the time delay.

2.4. Calculating the largest Lyapunov exponents (LLE)

Lyapunov exponents are indicators that measure the chaotic characteristics120

of a time series. For a chaotic system, Lyapunov exponents are the average
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exponential rates of divergence or convergence of the nearby orbits in the phase

space [1]. Since it costs huge calculation burden to estimate all the Lyapunov

exponents of a system, which is unnecessary, only the LLE is chosen to measure

the chaotic extent of a wind power time series.125

In [32] Wolf proposed a general method to calculate the LLE of an experi-

mental time series, based on which some improvements have been made in this

research in the selection of some parameters to better fit the characteristics of

wind power data. The improved Wolf algorithm is explained as follows.

In general, wind power time series only has one observation, but the cal-130

culation of Lyapunov exponents should be conducted in the phase space, by

analyzing the chaotic attractor and the trajectory orbits of the states. There-

fore, an original time series {x1, x2, · · · , xn} is first reconstructed into a multi-

dimensional phase space:

X =


x1, x1+τ , · · · , x1+(m−1)τ

x2, x2+τ , · · · , x2+(m−1)τ

· · ·

xN , xN+τ , · · · , xN+(m−1)τ

 (12)

where m is the embedding dimension, τ is the time delay, N = n− (m− 1)τ is135

the total number of state points in the phase space.

To calculate its LLE, it is needed to analyze the long-term evolution of

two adjacent orbits in the reconstructed phase space. The two adjacent orbits,

where two neighboring points are evolving along, should satisfy the following

condition: the time interval of the two points in the original time series is at140

least one orbital period [32]. As long as two points have relatively small spatial

distance, they can be considered as the initial states of the attractor in the

phase space, although they are recorded at different moments in the original

time series.

As shown in Figure 2, the estimation process can be described as follows.145

Step 1: For the initial point of the reconstructed vector p0 = X (t0) ={
xt0 , xt0+τ , . . . , xt0+(m−1)τ

}
, locate its NN in the Euclidean sense p′0 = X (t′0).
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Figure 2: The procedure of calculating the LLE of an experimental time series.

The distance between the two points is defined as L(t0).

As discussed above, the two points should be at least one orbital period

apart. There is no certain criterion about how to choose the orbital period of a

wind power time series. Therefore, according to the principles of choosing the

embedding dimension and time delay, to avoid excessive overlap or separation

of the evolutionary orbits of the points, this paper proposes to choose the time

interval of the first and the last coordinates of each phase point as the orbital

period

P = (m− 1)τ (13)

Thus, the initial point p0 and its NN p′0 should satisfy the following condition:

|t0 − t0
′| > P (14)

Step 2: As the two points evolve one step to a later time t1, the initial

length element L(t0) becomes L′(t1), and p′0 becomes p′1. At each moment tk,

estimate the logarithm of the change of the length element and denote it as ηk:

ηk = log2
L′ (tk)

L (tk−1)
(15)

To estimate the length element as accurately as possible, the evolution time

∆t = tk − tk−1 should be short enough so that only a small-scale attractor150

structure is likely to be examined [32]. In this paper, the evolution time ∆t
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is set as one sampling interval, ∆t = 1. This is because this research aims to

predict wind power in short term and ultra-short term, which requires paying

attention to the evolution of the data points at each step.

Step 3: To avoid the length element growing too large, a new NN should155

be chosen as time evolves. This new neighbor should satisfy two criteria: (1) its

spatial distance (Euclidean distance) from the evolved fiducial point is small; (2)

the angular separation between the evolved and replacement element is small.

Here, the restriction is set that the separation θ should be an acute angle. For

example, in Figure 2, when L(t0) evolves to time t1, if the new length element160

L(t1) and the angular separation θ1 between L(t1) and L′ (tk) is small, the

new NN p′′1 is an adequate replacement of the initial NN p′1. If no adequate

replacement point can be found, p′1 will be retained.

Step 4: Repeat Step 3 until the fiducial trajectory has traversed the entire

data. After each evolution, calculate the change rate of the length element ηk,

and the LLE is the mean value of the change rate, which is defined as

λ1 =
1

tS − t0

S∑
k=1

log2
L′ (tk)

L (tk−1)
(16)

where S is the number of the evolution steps.

3. Multivariate PSR and selection of NNs165

Usually, when applying the PSR method to wind power time series, only

single time series are analyzed. However, wind power data are related to sev-

eral factors, including meteorological factors, wind power and speed data from

neighboring wind farms, and so on [34]. This paper discusses the relationship

between wind power time series of neighboring wind farms. Based on the char-170

acteristics analysis method described in Section 2, it is proposed to reconstruct

several related time series into the same phase space and select the NNs in this

phase space. The chosen points will be delivered to the forecasting model to

carry out the prediction. In this research, two multivariate time series PSR

methods are developed, namely HDPSR and LDPSR.175
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3.1. High-dimensional phase space reconstruction (HDPSR)

Given M experimental time series, {X1, X2, . . . , Xi, . . . , XM}, where Xi =

(xi,1, xi,2, . . . , xi,j , xi,n) , i = 1, 2, . . . ,M . Define
x1,1, x1,2, · · · , x1,j , · · · , x1,n

x2,1, x2,2, · · · , x2,j , · · · , x2,n

M

xM,1, xM,2, · · · , xM,j , · · · , xM,n

 (17)

↓, ↓, ∧, ↓, ∧, ↓

Y1, Y2, · · · , Yj , · · · , Yn

Thus, a multivariate time series Y = (Y1, Y2, . . . , Yn) is obtained. Similar to

univariate time series, PSR is carried out on Y to obtain the reconstructed180

point

V j =
(
Yj , Yj+τ , . . . , Yj+(m−1)τ

)
(18)

=


x1,j , x1,j+τ1 , . . . , x1,j+(m1−1)τ1

x2,j , x2,j+τ2 , . . . , x2,j+(m2−1)τ2

· · · ,

xM,j , xM,j+τM , . . . , xM,j+(mM−1)τM

 (j = 1, 2, . . . , N)

where mi and τi(i = 1, 2, . . . ,M) are the embedding dimension and time delay

of the ith time series Xi; N = min (n− (mi − 1) τi) is the total number of phase

points in the reconstructed space. Stretch V j , j = 1, 2, . . . , N into a phase point

with m coordinates:185

V j =
(
x1,j , x1,j+τ1 , . . . , x1,j+(m1−1)τ1 ,

x2,j , x2,j+τ2 , . . . , x2,j+(m2−1)τ2 ,

· · · ,

xM,j , xM,j+τM , . . . , xM,j+(mM−1)τM

)
= (vj,1, vj,2, · · · , vj,m) (j = 1, 2, . . . , N) (19)

where m =
∑M

i=1 mi is the dimension of the reconstructed phase space. There-

fore, the reconstructed vector is V = (V1,V2, . . . ,VN ), Vj represents the jth
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state of the reconstructed attractor.

Comparing with the vector reconstructed from single time series, V not

only contains the information of the data to be analyzed and predicted, but190

also involves the information of the related variables. Therefore, each state

point V j can be considered as a microsystem which reflects the state of the

data and related factors at evolution time ti. As time evolves, the evolution

trajectory reveals the variation of the system state. Figure 3 shows the process

of the reconstruction. The example contains three wind power time series,195

W1, W2, and W3, whose embedding dimensions are equal to three, and they

are reconstructed into a nine-dimensional phase space, where v1 − v9 represent

the coordinates of the reconstructed vectors. Take point Vj as an example.

vj,q(q = 1, 2, . . . , 9) is the value of its qth coordinate, and q just represents

the coordinate, not the index of this value in its original time series. Each200

point V j(j = 1, 2, . . . , N) is defined by nine coordinates, and they contain the

information of three time series.

Further, the selection of the NNs in the space is discussed. For a state point

Vp, its k NNs are selected based on Euclidean distance. In this way, several

points whose states of wind power data and corresponding factors are similar205

can be obtained. Then these points are delivered to the forecasting model to

predict the following state. Note that the prediction performance is strongly

related to the number of NNs, k, and the determination of k will be discussed

in detail in Section 4.3.

3.2. Low-dimensional phase space reconstruction (LDPSR)210

As discussed above, the dimension of the high-dimensional reconstructed at-

tractor is the sum of the dimensions of all the time series involved; thus, the

high-dimensional PSR method has no strict requirement on the dimensions of

each time series involved. However, for low-dimensional PSR, the dimensions of

all the time series are expected to be equal, so that they can be reconstructed215

into a phase space with this dimension. The algorithm of this method is similar

to the PSR of univariate time series, where the critical difference is that this
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Figure 3: The process of high-dimensional phase space reconstruction (HDPSR)
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method aims to expand the phase space and obtain more similar state points,

which can help to evaluate the evolution of the data. The process can be de-

scribed as follows.220

For M experimental time series, {X1, X2, · · · , Xi, · · · , XM}, Xi = (xi,1, xi,2,

· · · , xi,j , xi,n), i = 1, 2, · · · ,M , estimate their chaos-related indicators, including

the LLE, embedding dimension, and time delay. Since each reconstructed point

represents a state of the phase space, the time series involved should satisfy

the following two conditions: (1) the magnitude of their LLE is close, which225

indicates that their chaotic extent is similar; (2) their embedding dimensions

are the same.

Then these M time series are reconstructed into phase space, respectively:

V i = (V i,1,V i,2, . . . ,V i,Ni)

=


xi,1, xi,1+τi , · · · , xi,1+(m−1)τi

xi,2, xi,2+τi , · · · , xi,2+(m−1)τi

· · ·

xi,Ni
, xi,Ni+τi , · · · , xi,Ni+(m−1)τi

 i = 1, 2, · · · ,M (20)

where V i is the reconstructed attractor of the ith time series, τi and m are its

time delay and embedding dimension, respectively, V i,j = (xi,j , xi,j+τi , · · · ,230

xi,j+(m−1)τi

)
, j = 1, 2, · · · , Ni is the jth reconstructed point of V i, and Ni =

n − (m − 1)τi is the total number of the reconstructed phase points. Since

these time series have different time delays, they will have different numbers

of reconstructed points. The embedding dimensions of all the M time series

are equal to m; in other words, they are reconstructed into a phase space with235

dimension m. Although these phase points are from different original time

series, they have similar chaotic characteristics and evolution trends, and thus,

they can provide more state information about this attractor.

Therefore, the related reconstructed vectors can be integrated into an iden-

tical space V , defined as

V = {V 1,V 2, · · · ,V M} (21)
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where the number of phase points in V is m =
∑M

j=1 mj . In this way, an

expanded phase space is obtained.240

The process of LDPSR is displayed in Figure 4. Same as Figure 3, three wind

power time series W1, W2, and W3 are reconstructed into a multi-dimensional

phase space. After LDPSR, they are reconstructed to their attractors V 1, V 2

and V 3, respectively, where vj,1−vj,3 (j=1,2,3) represent the coordinates of their

reconstructed vectors, j is the index of the time series variable. Integrate the245

three vectors and obtain an expanded phase space V , the phase points in which

are defined as V j,i = (vj,i,1, vj,i,2, vj,i,3), j = 1, 2, 3, i = 1, 2, · · · , Nj . Different

from HDPSR, reconstructed attractors in V in LDPSR are independent with

one another, they have their own evolution trajectories, although their chaotic

characteristics are similar.250

Next, we discuss how to select the nearest neighbors (NNs) in such an ex-

panded space. For a phase point V j,p (j = 1, 2, · · · ,M ; p = 1, 2, · · · , Nj), look

for its k nearest points based on the Euclidean distance criterion in the in-

tegrated phase space V . These chosen points not only include points from

V j where V j,p is in, but also involve some from other reconstructed vectors255

V i (i ̸= j). Compared to the selection of NNs in univariate phase space, the

advantage of this method is: under the condition that the number of NNs is

equal, this method can gain more points whose states are similar to V j,p. This

is because in a reconstructed univariate phase space, as the spatial distance of

two points increases, the difference of their states will become larger. Therefore,260

it can only provide a limited number of points whose state similarity with V j,p

is in a certain range; whereas, the integrated multivariate phase space V , re-

constructed from several related time series, can provide more points that meet

the requirement on state similarity.

3.3. Validation of the multivariate reconstructed phase space265

In our research, multiple variables are reconstructed into the same phase

space, and the state of each point in the phase space will be determined by these

variables. Further, the evolution of these phase points will help implement the
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Figure 4: The process of low-dimensional phase space reconstruction (LDPSR).
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prediction. Therefore, it is necessary to verify that the chaotic characteristics of

the reconstructed phase space are similar to those of the original signals. During270

the validation process, the LLE is selected to estimate the chaotic extent of the

reconstructed vectors. Here some adjustments to the LLE calculation algorithm

are made based on the reconstructed phase space.

In the low-dimensional reconstructed phase space, each reconstructed vector

is considered as an evolution trajectory. To calculate the LLE, the separation of275

adjacent trajectories should be analyzed. The calculation method is explained

as follows.

First, for each reconstructed vector V i (i = 1, 2, · · · ,M), look for the near-

est neighbor of its first state point V i,1 in the other reconstructed vectors,

identify the adjacent trajectory V j (j ̸= i) where the nearest neighbor point is280

located, and calculate the LLE based on (15) and (16). Note that the difference

between this validation algorithm and the original LLE estimation algorithm is

that, the pair of nearest neighbors come from different reconstructed vectors.

Therefore, the time interval restriction defined in (14) is not needed any more.

The calculation result is denoted as λi, i = 1, 2, · · · ,M .285

Take the mean value of the calculation results as the LLE of the recon-

structed phase space, which is defined as

λ =
1

M

M∑
j=1

λj (22)

The magnitude of λ reflects the chaotic extent of the reconstructed phase space.

In the high-dimensional reconstructed phase space, the calculation of LLE

is consistent with that described in (13)-(16), but the parameters need to be

chosen properly. For the embedding dimension, it is selected as the summary

of the dimensions of each variable involved, i.e., m =
∑M

j=1 mj ; and for the290

time delay, to avoid possible trajectory crossover problems, select τ = max(τi),

i = 1, 2, · · · ,M .
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3.4. The proposed model

Based on the algorithms discussed above, a short-term multivariate wind

power time series forecasting model is proposed, as is shown in Figure 5. This295

model consists of three main modules:

1. Chaotic characteristics analysis. This procedure aims to select the factors

that have strong relationships with the data to be analyzed and forecasted.

The Cao and mutual information methods are used to calculate the em-

bedding dimension and time delay of the time series, and the Cao and300

Wolf methods are used to analyze whether a time series is chaotic and to

estimate its LLE to assess its chaotic extent. Time series that have similar

chaotic characteristics (especially LLE) are considered as related data and

will be grouped. According to their embedding dimension, these groups

will be classified into two categories: time series with equal dimensions305

and time series with different dimensions.

2. Multivariate time series phase space reconstruction and model validation.

For the groups of time series that have different embedding dimensions,

implement HDPSR on them and reconstruct them into high-dimensional

phase space. And for time series that have equal embedding dimensions,310

implement LDPSR on them and reconstruct them into low-dimensional

but expanded phase space.

3. Nearest neighbor selection and prediction. Based on the principle of mini-

mum error, a proper value of the number of training points, as well as the

number of nearest neighbors are chosen. Finally, the chosen input points315

are delivered into a well-constructed forecasting model, such as LSSVM,

to implement the forecasting.

4. Case study

4.1. Experiment setting

In this section, we select wind power data from several neighboring wind320

farms in Michigan to validate the proposed model and apply it to short-term
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Figure 5: Flowchart of the proposed model.
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Figure 6: Wind power time series from five wind farms. The upper one shows the original

wind power time series, and the lower one shows the normalized ones.

forecasting. Affected by geographical environment factors, wind sites that are

close to one another may have some similar features in wind power data. Five

wind sites are chosen to carry out the experiments, which are Site 6605, Site

6206, Site 4965, Site 6073 and Site 4908. Their locations are shown in Table325

1. For each wind site, wind power data for a whole year are available, and the

data in January, 2005 are used to carry out the validation. The data sampling

interval is 10 minutes. Data curves of the original and the normalized time

series are shown in Figure 6, where the normalized range is [0.1, 0.9]. We can

see that the dynamic trends of these five wind power curves are similar, which330

meets the basic requirements of multivariate phase space reconstruction.

In our research, the least-square support vector machine (LSSVM) model

is selected as the forecasting model, and it will be considered as a benchmark

to evaluate the prediction performance of the proposed LSSVM-LDPSR model

and LSSVM-HDPSR model. We will carry out 1-step ahead (10 minutes), 3-

step ahead (30 minutes), and 6-step ahead (1 hour) forecast on the data. The

forecasting performance is measured by MAPE and NRMSE, which assess

the forecasting accuracy and model stability, respectively. They are defined as
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Table 1: Locations of the five wind sites
Site Latitude Longitude

6605 43°3′N 82°67′W

6206 43°39′N 82°75′W

4965 43°42′N 82°63′W

6073 43°38′N 82°86′W

4908 43°62′N 82°7′W

follows:

MAPE =
1

n

n∑
i=1

|yi − ŷi
yi

| × 100 (23)

NRMSE =
1

Y

√√√√ 1

n− 1

n∑
i=1

(yi − ŷi)
2 × 100 (24)

where n is the number of testing points; yi and ŷi are the prediction value and

actual value, respectively; Y is the installed capacity of the wind farm.

4.2. Characteristics analysis

The chaotic characteristics of the time series from each wind site are tested335

and the results are shown in Table 2. It shows that the LLE of Site 6206,

Site 4965 and Site 4908 are similar, within the range of 0.15 and 0.165, and

that of Site 6605 and Site 6073 are similar, within the range of 0.075 and 0.09.

Therefore, based on the LLE and PSR parameters, the time series are divided

into two groups: (1) Site 6206, Site 4965, and Site 4908; (2) Site 6605 and Site340

6073. For the first group, they have similar LLE, similar time delay (τ) and equal

embedding dimension (m), so both LDPSR and HDPSR can be implemented

on them. For the second group, they can only be reconstructed into high-

dimensional phase space.

Based on the above analysis, three datasets are selected to carry out the345

prediction: (1) two-dimensional wind power time series from Site 6206 and Site

4965 (SET 1); (2) three-dimensional wind power time series from Site 6206, Site

4965, and Site 4908 (SET 2); (3) two-dimensional wind power time series from
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Table 2: LLE and PSR parameters of wind power time series

Site LLE
Embedding

Time delay (τ)
dimension (m)

6605 0.0786 5 39

6206 0.1648 3 56

4965 0.1572 3 57

6073 0.0894 4 37

4908 0.1537 3 55

Site 6605 and Site 6073 (SET 3). Before prediction, we will discuss the selection

of the training data for the forecasting model and nearest neighbors for the data350

to be predicted in the following subsection.

4.3. The determination of the numbers of training data points and nearest neigh-

bors (NNs)

For a forecasting model, the number of training points has a great influence

on the effect of model training, and the nearest neighbors selected will affect the355

data regression and fitting, thus directly influence the prediction performance.

Denote the number of training points as L and the number of nearest neighbors

as k. In our experiments, we have found that the prediction evaluation indicators

(MAPE and NRMSE) show different change trends with the variation of k

and L. Moreover, MAPE and NRMSE show a certain trend of change with360

the variation of the combinations of k and L.

Wind power data from Site 6206 are selected as testing example, and we

discuss the performance of the LSSVM-HDPSR model. Conditions of LSSVM,

LSSVM-LDPSR models and data from other wind sites are similar. Three

groups of testing have been experimented, analyzing the influence of k, L and365

the combination of k and L (denoted as kL) on MAPE and NRMSE in 1-step

ahead (10 minutes), 3-step ahead (30 minutes), 6-step ahead (1 hour), and 12-

step ahead (2 hours) prediction, respectively. The results are shown in Figure
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Figure 7: The variation of MAPE and NRMSE with the increase of k in different steps

ahead prediction.

7 ∼ Figure 9.

To avoid excessive calculations, not the results of all the values of the370

parameters are tested. Instead, the time series of k and L are defined as

k = 5i (i = 1, 2, · · · , 20) with an interval of 5 and L = 100+10i (i = 1, 2, · · · , 45)

with an interval of 10. In each figure, the minimum value of the curves is circled

with a red ellipse. In Figure 7, the horizontal axis is i (k = 5i). It shows that

the prediction achieves better performance when k is small, and as k increases,375

the mean trend of MAPE and NRMSE increases generally. This indicates

that there’s no need to choose too many NNs when experimenting short-term

forecasting. Keeping the number of k within the range of [10, 15] is proper.

The change trend of MAPE and NRMSE with the variation of L is shown

in Figure 8. The horizontal axis in this figure is also i (L = 100 + 10i). The380

curves indicate that in 1-step and 3-step ahead forecasting, the prediction ob-

tains better performance when i is larger than 30 (L>400). And in 6-step

ahead forecasting, both MAPE and NRMSE obtain the smallest value when

i = 5 (L = 140), while in 12-step ahead forecasting they both get the best results
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Figure 8: The variation of MAPE and NRMSE with the increase of L in different steps

ahead prediction.

when i = 14 (L = 230). This implies that forecasts of different time scales have385

different requirements for the number of training points (L).

Next, we discuss how the evaluation indicators vary under different combi-

nations of k and L. For k, keep it within the range of [10,15], and L is still

defined as L = 100+10i, (i = 0, 1, 2, · · · , 45) thus can obtain 276 pairs of [k, L],

{[10, 100] , · · · , [10, 550] , [11, 100] , · · · , [11, 550] , · · · , [15, 550]}. The horizontal390

axis in this figure is set as p (p = 1, 2, · · · , 276), each point on the horizontal axis

represents a pair of [k, L] Testing results are displayed in Figure 9. The varia-

tion of both MAPE and NRMSE appears periodic, and the sudden changes

in the curves appear at the time when the value of k changes. When k remains

the same, with the increase of L, MAPE and NRMSE change in a similar395

trend, leading to the periodic curves. Figure 9 shows that different values of k

in this range do not result in obvious differences in the performance of MAPE

or NRMSE. Therefore, it is not necessary to further subdivide the scale of

[k, L]. In the following forecasting analysis, we first determine a proper scale of

k and L, respectively, then utilize the principle of the minimum error to select400
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the optimal combination of k and L.

4.4. Forecasting of two-dimensional wind power data from Site 6206 and Site

4965 (SET 1)

According to Table 2, these two time series have equal embedding dimen-

sions m = 3. Both LDPSR and HDPSR are implemented to test and compare405

their performance, thus they are reconstructed into a three-dimensional phase

space and a six-dimensional phase space, respectively. After reconstruction, the

optimal combinations of k (the number of the nearest neighbors of each point

to be predicted) and L (the number of training data for the forecasting model)

for each time series are selected using the principle of minimum error described410

in Section 4.3. Next, the selected input samples (the nearest neighbors and

training data) are delivered to the forecasting model LSSVM to implement the

prediction. The forecasting performance is shown in Table 3. Moreover, to

visually observe the prediction effect of the models, the results of MAPE and

NRMSE are displayed in histograms in Figure 10.415
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Figure 10: Prediction performance of different models on SET 1.

In Table 3, the smallest value of MAPE and NRMSE is bold, indicating

the best forecasting performance. As the results show, both LDPSR-LSSVM

and HDPSR-LSSVM can achieve better performance than LSSVM in general.

In 1-step ahead forecasting, their improvement effect is not obvious. Nonethe-

less, as the look-ahead step increases, the advantages of multivariate PSR grad-420

ually show. For MAPE, in 3-step ahead forecast, the LDPSR-LSSVM and

HDPSR-LSSVM models improve 11.39% and 9.84% on Site 6206, respectively;

and improve 11.06% and 14.39% on Site 4965. In 6-step ahead forecasting, the

improvements increase to 16.99% and 17.73% on Site 6206, and 11.87% and

14.52% on Site 4965, respectively. As for NRMSE, they both achieve better425

performance than LSSVM for all the three scales of forecasting, which indicates

that these models can maintain good forecasting stability when reconstructed

into an expanded phase space or into higher-dimensional space.

Comparing the performance of LDPSR-LSSVM and HDPSR-LSSVM mod-

els, it is found that HDPSR-LSSVM can achieve higher prediction accuracy430

(MAPE) and better prediction stability (NRMSE) than LDPSR-LSSVM. Es-

pecially in terms of stability, the advantages of HDPSR are more obvious: in
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the three-step and six-step prediction, HDPSR-LSSVM can achieve better sta-

bility than LDPSR-LSSVM. In this case, the low-dimensional phase space is

three-dimensional, while the high-dimensional phase space is six-dimensional.435

In the high-dimensional phase space, each phase point contains the reconstruc-

tion information of two variables, while phase points in the low-dimensional

phase space only contain the information of one variable, but the number of

phase points in this space is more. Therefore, it can be inferred that a sin-

gle phase point containing the information of all variables is more helpful to440

improve the stability of the prediction model than multiple phase points with

the information of individual variable, especially when the prediction step is

long (e.g. longer than three steps), the requirements for model stability will be

higher. What’s more, HDPSR-LSSVM has better stability effect under such cir-

cumstances, it is also proved that the chaotic system composed of phase points445

containing all variables can better track the dynamic evolution law of the points

to be predicted and realize the prediction effect at a longer forecasting scale.

This is the condition with two variables. Next, data from three variables will be

tested to see how the two models perform as the number of variables increases

(and, correspondingly, the reconstructed phase space dimension increases).450

4.5. Forecasting of three-dimensional wind power data from Site 6206, Site 4965,

and Site 4908 (SET 2)

Based on the above analysis on SET 1, time series from Site 4908 is added

to form a three-dimensional model. As Table 2 shows, these three time se-

ries have similar LLE (0.1648, 0.1572, 0.1537) and time delay (56, 57, 55),455

and their embedding dimensions are equal (m = 3). Implement LDPSR and

HDPSR on them, and they are reconstructed into a three-dimensional and a

nine-dimensional phase space, respectively. Similarly, select the nearest neigh-

bors and training data for the points to be predicted in the reconstructed phase

space based on the principle of minimum error described in Section 4.3, and460

deliver them to the forecasting model LSSVM. Their prediction performance is

displayed in Table 4 and Figure 11.
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Table 3: Forecast performance of the proposed models on SET 1 (%)

Prediction Evaluation
Site LSSVM LDPSR-LSSVM HDPSR-LSSVM

scale (m) indicator

1-Step

MAPE
6206

4965

9.5062

8.3438

9.2749

7.1292
9.0412
8.6736

NRMSE
6206

4965

2.4184

2.4265

2.4065

2.2576
2.3516
2.3696

3-Step

MAPE
6206

4965

22.3460

22.0936

19.8002
19.6505

20.1473

18.9147

NRMSE
6206

4965

5.4966

6.2732

4.8640

5.8781

4.7414
5.1645

6-Step

MAPE
6206

4965

45.4564

41.4899

37.7355

36.5637

37.3949
35.4673

NRMSE
6206

4965

9.0853

10.4678

7.4156

9.6729

7.3762
9.0283

The bold number indicates the best performance.
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Figure 11: Prediction performance of different models on SET 2.
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Table 4: Forecast performance of the proposed models on SET 2 (%)

Prediction Evaluation
Site LSSVM LDPSR-LSSVM HDPSR-LSSVM

scale (m) indicator

1-Step

MAPE

6206

4965

4908

9.5069

8.3438

8.3596

9.0172

7.3778
8.1314

8.0754
7.9567

8.2458

NRMSE

6206

4965

4908

2.3459

2.4265

2.1680

2.2761

2.3169
2.1857

2.1696
2.5326

2.0963

3-Step

MAPE

6206

4965

4908

21.7646

22.0936

25.3540

19.6587
19.4812
24.7523

21.0980

21.7329

25.2351

NRMSE

6206

4965

4908

5.3367

6.2732

5.7404

4.5840
5.8115
5.6695

5.0914

6.0772

5.5320

6-Step

MAPE

6206

4965

4908

46.0630

41.4899

53.4156

37.4277
36.4896
52.5466

39.3157

40.3506

53.0351

NRMSE

6206

4965

4908

9.1750

10.4678

9.6052

7.1945
9.7823

9.5509

7.6181

9.5590
9.5140

The bold number indicates the best performance.
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Like the two-dimensional model, the LDPSR-LSSVM and HDPSR-LSSVM

can achieve smaller MAPE than LSSVM, and their advantages are more ob-

vious in 3-step ahead and 6-step ahead forecast. It is noticed that for data465

from Site 6206 and Site 4965, the three-dimensional model can obtain rela-

tively good performance in MAPE, especially for the 1-step ahead forecast,

but as NRMSE shows, the stability of this model in 1-step ahead forecast

is a little weaker than the two-dimensional model, which indicates that the

ultra-short-term prediction stability may be influenced by the high dimension470

or expanded space with multiple state variables. However, in 3-step and 6-step

ahead forecast, LDPSR-LSSVM and HDPSR-LSSVM still show their advan-

tages in NRMSE.

Further, the performance of the two-dimensional and three-dimensional mod-

els is compared. For the two-dimensional model, LDPSR-LSSVM and HDPSR-475

LSSVM have similar performances in MAPE and NRMSE, and the HDPSR

slightly defeats LDPSR; whereas, for the three-dimensional model, the overall

performance of LDPSR is better than HDPSR, which means it can achieve bet-

ter prediction accuracy, and maintain acceptable stability at the same time.

This indicates that when analyzing multiple variables, if their total dimensions480

are relatively small (in our research, for example, no more than nine), then

each state point in the high-dimensional space can provide more data informa-

tion, thus can obtain satisfactory prediction results. But if their embedding

dimensions are too high, the state points contain too much information, so the

difference between them and the variable to be analyzed will increase, which485

will in turn affect the prediction performance. In this condition, it is suitable

to choose the low-dimension phase space reconstruction method.

4.6. Forecasting of two-dimensional wind power data from Site 6605 and Site

6073 (SET 3)

The embedding dimensions of these two variables are higher than the other490

three variables and are not equal, so we implement HDPSR on them, then

they are reconstructed into a nine-dimensional phase space. Table 5 and Figure
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Figure 12: Prediction performance of different models on SET 3.

12 show the prediction results. As the figures show, HDPSR-LSSVM achieves

better performance in prediction accuracy and stability than LSSVM in 1-step

ahead, 3-step ahead and 6-step ahead forecast. In 1- step ahead forecast, MAPE495

for Site 6605 and Site 6073 are improved by 7.39% and 11.21%; in 3-step ahead

forecast, the improvements are 3.21% and 24.70%; in 6-step ahead forecast,

these improvements reach 27.11% and 16.45%. And the NRMSE also main-

tains a good level. As the look-ahead step increases, advantages of multivariate

PSR gradually show. That is because as the prediction scale gets longer, the500

forecasting model needs to resolve more data information, which is exactly what

the multivariate PSR model can provide.

4.7. Discussion

The simulation results show that the proposed multivariate phase space spa-

tial reconstruction method can achieve satisfactory effect in analyzing wind505

power time series from adjacent wind farms. Based on the chaotic characteris-

tics of several variables, we reconstruct them into one phase space as a highly

connected system, then select training points in this system to implement the

prediction. What’s more, we give a chaotic analysis of the reconstructed phase
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Table 5: Forecast performance of the proposed models on SET 3 (%)

Prediction Evaluation
Site LSSVM HDPSR-LSSVM

scale (m) indicator

1-Step

MAPE
6605

6073

8.0872

6.5133

7.4896
5.7834

NRMSE
6605

6073

2.3114

1.7128

2.2810
1.4986

3-Step

MAPE
6605

6073

17.4517

18.9569

16.8918
14.2752

NRMSE
6605

6073

4.7614

4.3248

4.7017
3.3328

6-Step

MAPE
6605

6073

36.2936

33.8811

26.4528
28.3063

NRMSE
6605

6073

7.8778

6.3828

6.9750
5.8650

The bold number indicates the best performance.

space, and the calculation results of LLE are displayed in Table 6. As we can510

see, the chaotic extent of reconstructed phase space is lower compared to the

original individual variables, which is possible, since the interaction between

multiple variables may lead to this result. However, the decrease of LLEs is not

too obvious, they are still in the same level of magnitude, indicating that our

reconstruction method is effective. Moreover, each variable is predicted based515

on the reconstructed multivariate space, and the results prove to be effective.

Therefore, we believe that for wind power time series from adjacent wind farms

which have similar chaotic dynamic evolutions, they can be analyzed as an in-

tegrated system, and the multivariate information provided by this system can

be utilized to support the prediction, achieving the improvement of prediction520

performance.
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Table 6: LLE of the reconstructed LDPSR and HDPSR of three SETs
LLE SET 1 SET 2 SET 3

LDPSR 0.1236 0.1150 –

HDPSR 0.1126 0.0962 0.0466

5. Conclusion

In this paper, two multivariate time series phase space reconstruction meth-

ods based on chaos theory are proposed to analyze the chaotic characteristics

of wind power time series from adjacent wind farms and to help implement the525

prediction. Our research includes two main parts: (1) chaos signal recogni-

tion and chaos extent estimation. We utilized the Cao method to distinguish

between deterministic signals and random signals. And we improved Wolf’s al-

gorithm for calculating the largest Lyapunov exponent to estimate the chaotic

extent of wind power time series; (2) based on the chaos analysis, we carried530

out the multivariate low-dimensional and high-dimensional phase space recon-

struction methods (LDPSR and HDPSR) and predicted wind power time series

from adjacent wind farms.

The results in the experiments show that: (a) the multivariate phase space

reconstruction methods proposed can analyze and help predict the wind power535

time series from adjacent wind power sites well; (b) the proposed LDPSR and

HDPSR models can ensure that the chaotic extent of reconstructed vectors

remains the same level as that of the involved original time series; (c) the im-

proved Wolf algorithm can effectively estimate the largest Lyapunov exponent

of wind power time series and can be used to verify the chaotic characteristics540

of the reconstructed vectors. These results indicate that we have successfully

predicted multivariate wind power time series using the chaotic dynamics anal-

ysis method. In the future, we will further study the chaotic dynamics of wind

power data. In addition, we will discuss the application of the proposed multi-

variate analysis methods in other types of data, including wind speed data and545

other meteorological data that affect wind power generation.
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